Skip to main content

Advertisement

Log in

Superconductivity on the Verge of a Pressure-Induced Lifshitz Transition in CaFe2As2: an Interpretation Within the Eliashberg Theory

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

In a recent paper, we presented the first directional point-contact Andreev reflection spectroscopy (PCARS) measurements on CaFe2As2 crystals under quasi-hydrostatic pressure and discussed the pressure dependence of the gaps and the critical temperature. While T c exhibits a well-known smooth dependence and a broad maximum at about 0.6 GPa, both gaps increase very sharply in a small pressure range between 0.5 and 0.6 GPa, leading to a doubling of the ratio 2Δ2/k B T c and a quadruplication of the ratio 2Δ1/k B T c , Δ1 and Δ2 being the small and large gap, respectively. This peculiar behavior is likely to be related to a sharp change in the lattice structure that, in turn, produces a 2D-3D topological transition in the hole-like Fermi surface sheet. In this work, we show that, within an effective three-band Eliashberg theory for the electron-spin fluctuation coupling (s± symmetry), these results can be rationalized as being due to a large increase of the electron-boson coupling, which mimics the effects of a boost mechanism for the coupling related to the underlying Lifshitz transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Torikachvili, M.S., Bud’ko, S.L., Ni, N., Canfield, P.C.: Phys. Rev. Lett. 101, 057006 (2008)

    Article  ADS  Google Scholar 

  2. Park, T. et al.: J. Phys.: Condens. Matter 20, 322204 (2008)

    Google Scholar 

  3. Yu, W. et al.: Phys. Rev. B 79, 020511(R) (2009)

    Article  ADS  Google Scholar 

  4. Soh, J.H. et al.: Phys. Rev. Lett. 111, 227002 (2013)

    Article  ADS  Google Scholar 

  5. Pratt, D.K. et al.: Phys. Rev. B 79, 060510(R) (2009)

    Article  ADS  Google Scholar 

  6. Yildirim, T.: Phys. Rev. Lett. 102, 037003 (2009)

    Article  ADS  Google Scholar 

  7. Dhaka, R.S. et al.: Phys. Rev. B 89(R), 020511 (2014)

    Article  ADS  Google Scholar 

  8. Gofryk, K. et al.: Phys. Rev. Lett. 112, 186401 (2014)

    Article  ADS  Google Scholar 

  9. Prokeš, K. et al.: Phys. Rev. B 81(R), 180506 (2010)

    Article  ADS  Google Scholar 

  10. Sanna, A., Profeta, G., Massidda, S., Gross, E.K.U.: Phys. Rev. B 86, 014507 (2012)

    Article  ADS  Google Scholar 

  11. Gonnelli, R.S. et al.: Sci. Rep. 6, 26394 (2016)

    Article  ADS  Google Scholar 

  12. Daghero, D., Gonnelli, R.S.: Supercond. Sci. Technol. 23, 043001 (2010)

    Article  ADS  Google Scholar 

  13. Daghero, D., Tortello, M., Ummarino, G.A., Gonnelli, R.S.: Rep. Prog. Phys. 74, 124509 (2011)

    Article  ADS  Google Scholar 

  14. Daghero, D., Tortello, M., Pecchio, P., Stepanov, V.A., Gonnelli, R.S.: Low Temp. Phys. 39, 199 (2013)

    Article  ADS  Google Scholar 

  15. Gonnelli, R.S. et al.: Supercond. Sci. Technol. 25, 065007 (2012)

    Article  ADS  Google Scholar 

  16. Suzuki, K., Usui, H., Kuroki, K.: J. Phys. Soc. Jpn. 80, 013710 (2011)

    Article  ADS  Google Scholar 

  17. Eliashberg, G.M.: Sov. Phys. JETP 11, 696 (1960)

    Google Scholar 

  18. Benedetti, P. et al.: Europhys. Lett. 28, 351 (1994)

    Article  ADS  Google Scholar 

  19. Choi, H.-Y.: Phys. Rev. B 53, 8591 (1996)

    Article  ADS  Google Scholar 

  20. Mazin, I.I., Singh, D.J., Johannes, M.D., Du, M.H.: Phys. Rev. Lett. 101, 057003 (2008)

    Article  ADS  Google Scholar 

  21. Chubukov, A.V., Pines, D., Schmalian, J.: A spin fluctuation model for d-wave superconductivity. In: Superconductivity, pp. 1349–1413. Springer, Heidelberg (2008)

  22. Manske, D., Eremin, I., Bennemann K.H.: Electronic theory for superconductivity in high-Tc cuprates and Sr2RuO4. In: Bennemann K.H., Ketterson J.B. (eds.) Superconductivity, pp. 1415–1515. Springer, Berlin, Heidelberg (2008)

  23. Ummarino, G.A., Tortello, M., Daghero, D., Gonnelli, R.S.: Phys. Rev. B 80, 172503 (2009)

    Article  ADS  Google Scholar 

  24. Ummarino, G.A., Tortello, M., Daghero, D., Gonnelli, R.S.: J. Supercond. Nov. Magn. 24, 247 (2011)

    Article  Google Scholar 

  25. Ummarino, G.A.: Phys. Rev. B 83, 092508 (2011)

    Article  ADS  Google Scholar 

  26. Boeri, L., Calandra, M., Mazin, I.I., Dolgov, O.V., Mauri, F.: Phys. Rev. B 82, 020506 (2010)

    Article  ADS  Google Scholar 

  27. Mazin, I.I., Schmalian, J.: Phys. C 469, 614 (2009)

    Article  ADS  Google Scholar 

  28. Inosov, D.S. et al.: Nat. Phys. 6, 178 (2010)

    Article  Google Scholar 

  29. Profeta, G.: Private communication

  30. Ummarino, G.A., Gonnelli, R.S.: Phys. Rev. B 56, R14279 (1997)

    Article  ADS  Google Scholar 

  31. Paglione, J., Greene, R.L.: Nat. Phys. 6, 645 (2010)

    Article  Google Scholar 

  32. Pecchio, P. et al.: Phys. Rev. B 88, 174506 (2013)

    Article  ADS  Google Scholar 

  33. Daghero, D. et al.: Supercond. Sci. Technol. 27, 124014 (2014)

    Article  ADS  Google Scholar 

  34. Lu, X. et al.: Supercond. Sci. Technol. 23, 054009 (2010)

    Article  ADS  Google Scholar 

  35. Szabò, P. et al.: Phys. Rev. B 79, 012503 (2009)

    Article  ADS  Google Scholar 

  36. Xu, N. et al.: Phys. Rev. B 88, 220508(R) (2013)

    Article  ADS  Google Scholar 

  37. Sau, J.D., Sachdev, S.: Phys. Rev. B 89, 075129 (2014)

    Article  ADS  Google Scholar 

  38. Innocenti, D. et al.: Phys. Rev. B 82, 184528 (2010)

    Article  ADS  Google Scholar 

  39. Perali, A., Innocenti, D., Valletta, A., Bianconi, A.: Supercond. Sci. Technol. 25, 124002 (2012)

    Article  ADS  Google Scholar 

Download references

Funding

G.A.U. acknowledges support from the MEPhI Academic Excellence Project (Contract No. 02.a03.21.0005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Ummarino.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ummarino, G.A., Daghero, D., Tortello, M. et al. Superconductivity on the Verge of a Pressure-Induced Lifshitz Transition in CaFe2As2: an Interpretation Within the Eliashberg Theory. J Supercond Nov Magn 31, 771–776 (2018). https://doi.org/10.1007/s10948-017-4319-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-017-4319-7

Keywords

Navigation