Peculiarities of Magnetic Behavior of CuO Nanoparticles Produced by Plasma-Arc Synthesis in a Wide Temperature Range

Abstract

Copper oxide nanoparticles, produced by direct plasmochemical synthesis in a low-pressure arc discharge plasma, show a wide variety of magnetic properties depending on the strength of the external magnetic field and the temperature. At low strength of the field and throughout the studied temperature range, the ferromagnetic state dominates. This state is caused by disordering of the spins on the surface of the nanoparticles. At high strength of the field and under temperatures of less than 200 K, nanoparticles exhibit a paramagnetic state due to the spin-glass behavior of copper atoms. At high strength of the field (more than 3 kOe) and under temperatures of above 300 K, the diamagnetic state of nanoparticles is observed, due to local eddy currents caused by oxygen vacancies. The temperature of antiferromagnetic ordering under study is significantly lowered (down to ∼ 100 K).

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    Ushakov, A.V., Karpov, I.V., Lepeshev, A.A., Petrov, M.I.: J. Appl. Phys. 118, 023907 (2015). https://doi.org/10.1063/1.4926549

    ADS  Article  Google Scholar 

  2. 2.

    Ushakov, A.V., Karpov, I.V., Lepeshev, A.A., Petorv, M.I., Fedorov, L.Yu.: JETP Lett. 99, 99 (2014). https://doi.org/10.1134/S002136401402009X

    ADS  Article  Google Scholar 

  3. 3.

    Lepeshev, A.A., Ushakov, A.V., Karpov, I.V., Balaev, D.A., Krasikov, A.A., Dubrovskiy, A.A., Velikanov, D.A., Petrov, M.I.: J. Supercond. Nov. Magn. 30, 931 (2017). https://doi.org/10.1007/s10948-016-3885-4

    Article  Google Scholar 

  4. 4.

    Karpov, I.V., Ushakov, A.V., Lepeshev, AA., Fedorov, Yu. L.: Tech. Phys. 62, 168 (2017). https://doi.org/10.1134/S106378421701011X

    Article  Google Scholar 

  5. 5.

    Ushakov, A.V., Karpov, I.V., Lepeshev, A.A., Petrov, M.I.: Vacuum 133, 25 (2016). https://doi.org/10.1016/j.vacuum.2016.08.007

    ADS  Article  Google Scholar 

  6. 6.

    Ushakov, A.V., Karpov, I.V., Lepeshev, A.A., Petrov, M.I., Fedorov, Yu. L.: Phys. Solid State 57, 919 (2015). https://doi.org/10.1134/S1063783415050303

    ADS  Article  Google Scholar 

  7. 7.

    Karpov, I.V., Ushakov, A.V., Fedorov, L. Yu., Lepeshev, A.A.: Tech. Phys. 84, 559 (2014). https://doi.org/10.1134/S1063784214040148 https://doi.org/10.1134/S1063784214040148

    Article  Google Scholar 

  8. 8.

    Dobretsov, K., Stolyar, S., Lopatin, A.: Acta Otorhinolaryngol. Ital. 35, 97 (2015)

    Google Scholar 

  9. 9.

    Punnoose, A., Magnone, H., Seehra, M.S., Bonevich, J.: Phys. Rev. B 64, 174420 (2001). https://doi.org/10.1103/PhysRevB.64.174420 https://doi.org/10.1103/PhysRevB.64.174420

    ADS  Article  Google Scholar 

  10. 10.

    Zheng, X.G., Xu, C.N., Nishikubo, K., Nishiyama, K., Higemoto, W., Moon, W.J., Tanaka, E., Otabe, E.S.: Phys. Rev. B 72, 014464 (2005). https://doi.org/10.1103/PhysRevB.72.014464

    ADS  Article  Google Scholar 

  11. 11.

    Kumzerov, Yu. A., Kartenko, N.F., Parfen’eva, L.S., Smirnov, I.A., Sysoeva, A.A., Misiorek, H., Jezowski, A.: Phys. Solid State 54, 1066 (2012). https://doi.org/10.1134/S1063783412050228

    ADS  Article  Google Scholar 

  12. 12.

    Thota, S., Shim, J.H., Seehra, M.S.: J. Appl. Phys. 114, 214307 (2013). https://doi.org/10.1063/1.4838915

    ADS  Article  Google Scholar 

  13. 13.

    Arbuzova, T.I., Naumov, S.V., Samokhvalov, A.A., Gizhevskii, B.A., Arbuzov, V.L., Shal’nov, K.V.: Phys. Solid State 43, 878 (2001). https://doi.org/10.1134/1.1371369

    ADS  Article  Google Scholar 

  14. 14.

    Arbuzova, T.I., Naumov, S.V., Arbuzov, V.L., Shal’nov, K.V., Ermakov, A.E., Mysik, A.A.: Phys. Solid State 45, 304 (2003). https://doi.org/10.1134/1.1553536

    ADS  Article  Google Scholar 

  15. 15.

    Asharf Shah, M., Al-Ghamdi, M.S.: Mater. Sci. Appl. 2, 977 (2011). https://doi.org/10.4236/msa.2011.28131

    Google Scholar 

  16. 16.

    L. Néel: CR Acad. Sci. Paris 252, 4075 (1961)

    Google Scholar 

  17. 17.

    Kondo, O., Ono, M., Sugiura, E., Sugiyama, K., Date, M.: J. Phys. Soc. Jpn. 57, 3293 (1988). https://doi.org/10.1143/JPSJ.57.3293

    ADS  Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the Russian Science Foundation (Project No 16-19-10054).

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. A. Lepeshev.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ushakov, A.V., Karpov, I.V. & Lepeshev, A.A. Peculiarities of Magnetic Behavior of CuO Nanoparticles Produced by Plasma-Arc Synthesis in a Wide Temperature Range. J Supercond Nov Magn 30, 3351–3354 (2017). https://doi.org/10.1007/s10948-017-4311-2

Download citation

Keywords

  • CuO nanoparticles
  • Vacuum arc
  • Ferromagnetism
  • Diamagnetism