Advertisement

Enhancement of Critical Current Density of MgB2 by Glutaric Acid Doping: a Simultaneous Improvement on the Intrinsic and Extrinsic Properties

  • Jafar M. ParakkandyEmail author
  • M. Aslam Manthrammel
  • Fahad Saad Alghamdi
  • Mohammed Shahabuddin
  • Nasser S. Alzayed
Original Paper
  • 111 Downloads

Abstract

In this study, we report an enhancement of critical current density of bulk MgB2 superconductors by glutaric acid (C5H8O4) doping. The effects of glutaric acid doping on MgB2 lattice resulted in a record self-field J c of the order of 106 A/cm2. A simultaneous improvement in the connectivity, pinning force, and H c2 is the major factor that determined excellent J c performance. X-ray diffraction analysis showed that samples were single-phase MgB2 with a minor trace of impurities. A dramatic change in grain morphology and homogeneity in grain distribution was found in the SEM images of doped samples. We observed that homogeneity in grain distribution played a crucial role in the connectivity and the upper critical field (H c2) of the doped samples. We were able to introduce a new dopant through a two-step mixing approach which is suitable to overcome the degradation of low field and self-field J c reported for carbon-doped MgB2 superconductor samples.

Keywords

MgB2 superconductor Glutaric acid doping Critical current density Upper critical field 

Notes

Acknowledgements

The authors would like to extend their sincere appreciation to the Deanship of Scientific Research at King Saud University for the funding of this research through the Research Group Project No. RGP-290.

References

  1. 1.
    Nagamatsu, J., Nakagawa, N., Muranaka, T., et al.: Nature 410, 63–64 (2001)ADSCrossRefGoogle Scholar
  2. 2.
    Dou, S.X., Shcherbakova, O., Yeoh, W.K., et al.: Phys. Rev. Lett. 98, 130404 (2007)CrossRefGoogle Scholar
  3. 3.
    Wang, J.L., Zeng, R., Kim, J.H., et al.: Phys. Rev. B 77, 174501 (2008)ADSCrossRefGoogle Scholar
  4. 4.
    Dou, S.X., Soltanian, S., Horvat, J., et al.: Appl. Phys. Lett. 81, 3419–3421 (2002)ADSCrossRefGoogle Scholar
  5. 5.
    Barua, S., Patel, D., Alzayed, N., et al.: Mater. Lett. 139, 333–335 (2015)CrossRefGoogle Scholar
  6. 6.
    Collings, E.W., Sumption, M.D., Bhatia, M., et al.: Supercond. Sci. Tech. 21, 103001 (2008)ADSCrossRefGoogle Scholar
  7. 7.
    Eisterer, M.: Supercond. Sci. Tech. 20, R47–R73 (2007)ADSCrossRefGoogle Scholar
  8. 8.
    Ansari, I.A., Parakkandy, J.M., Shahabuddin Shah, M., et al.: Arab. J. Sci. Eng. 42, 383–388 (2017)CrossRefGoogle Scholar
  9. 9.
    Dou, S.X., Soltanian, S., Yeoh, W.K., et al.: IEEE Trans. Appl. Supercond. 15, 3219–3222 (2005)CrossRefGoogle Scholar
  10. 10.
    Dou, S.X., Shcherbakova, O., Yoeh, W.K., et al.: Phys. Rev. Lett. 98, 097002 (2007)ADSCrossRefGoogle Scholar
  11. 11.
    Yeoh, W.K., Dou, S.: Physica C 456, 170–179 (2007)ADSCrossRefGoogle Scholar
  12. 12.
    Bhatia, M., Sumption, M.D., Collings, E.W.: IEEE T. Appl. Supercon. 15, 3204–3206 (2005)CrossRefGoogle Scholar
  13. 13.
    Shahabuddin Shah, M., Shahabuddin, M., Parakkandy, J.M., et al.: Solid State Commun. 218, 31–34 (2015)ADSCrossRefGoogle Scholar
  14. 14.
    Alzayed, N.S., Soltan, S., Shahabuddin, M., et al.: J. Supercond. Nov. Magn. 28, 387–390 (2015)CrossRefGoogle Scholar
  15. 15.
    Patel, D., Maeda, M., Choi, S., et al.: Scripta Mater. 88, 13–16 (2014)CrossRefGoogle Scholar
  16. 16.
    Dou, S.X., Braccini, V., Soltanian, S., et al.: J. Appl. Phys. 96, 7549–7555 (2004)ADSCrossRefGoogle Scholar
  17. 17.
    Kumakura, H., Kitaguchi, H., Matsumoto, A., et al.: Appl. Phys. Lett. 84, 3669–3671 (2004)ADSCrossRefGoogle Scholar
  18. 18.
    Sumption, M.D., Bhatia, M., Rindfleisch, M., et al.: Appl. Phys. Lett. 86, 092507 (2005)ADSCrossRefGoogle Scholar
  19. 19.
    Yamamoto, A., Shimoyama, J., Ueda, S., et al.: Supercond. Sci. Tech. 18, 1323–1328 (2005)ADSCrossRefGoogle Scholar
  20. 20.
    Singh, P.P.: Solid State Commun. 127, 271–274 (2003)ADSCrossRefGoogle Scholar
  21. 21.
    Parakkandy, J.M., Shahabuddin, M., Shah, M.S., et al.: J. Supercond. Nov. Magn. 28, 475–479 (2015)CrossRefGoogle Scholar
  22. 22.
    Ghorbani, S.R., Darini, M., Wang, X.L., et al.: Solid State Commun. 168, 1–5 (2013)ADSCrossRefGoogle Scholar
  23. 23.
    Kim, J.H., Zhou, S., Hossain, M.S.A., et al.: Appl. Phys. Lett. 89, 142505 (2006)ADSCrossRefGoogle Scholar
  24. 24.
    Kim, J.H., Dou, S.X., Hossain, M.S.A., et al.: Supercond. Sci. Tech. 20, 715–719 (2007)ADSCrossRefGoogle Scholar
  25. 25.
    Hossain, M.S.A., Kim, J.H., Xu, X., et al.: Supercond. Sci. Tech. 20, L51–L54 (2007)CrossRefGoogle Scholar
  26. 26.
    Avdeev, M., Jorgensen, J.D., Ribeiro, R.A., et al.: Physica C 387, 301–306 (2003)ADSCrossRefGoogle Scholar
  27. 27.
    Rowell, J.: M. Supercond. Sci. Tech. 16, R17–R27 (2003)ADSCrossRefGoogle Scholar
  28. 28.
    Shahabuddin, M., Alzayed, N.S., Jafar, M.P., et al.: Physica C 471, 1635–1642 (2011)ADSCrossRefGoogle Scholar
  29. 29.
    Kim, J.H., Dou, S.X., Oh, S., et al.: J. Appl. Phys. 104, 063911 (2008)ADSCrossRefGoogle Scholar
  30. 30.
    Kim, J.H., Oh, S., Heo, Y.U., et al.: Npg Asia Mater. 4, 2945–2986 (2012)Google Scholar
  31. 31.
    Askerzade, I.: N. Phys-Usp + 49, 1003–1016 (2006)CrossRefGoogle Scholar
  32. 32.
    Martinez, E., Mikheenko, P., Martinez-Lopez, M., et al.: Phys. Rev. B 75, 134515 (2007)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of Physics, College of Science and Humanity StudiesPrince Sattam bin Abdulaziz UniversityAlkharjKingdom of Saudi Arabia
  2. 2.Department of Physics and Astronomy, College of ScienceKing Saud UniversityRiyadhKingdom of Saudi Arabia
  3. 3.National Center for NanotechnologyKing Abdulaziz City for Science and TechnologyRiyadhKingdom of Saudi Arabia

Personalised recommendations