Advertisement

Journal of Superconductivity and Novel Magnetism

, Volume 31, Issue 4, pp 1119–1126 | Cite as

Mechanism of Enhanced Carbon Substitution in CNT-MgB2 Superconductor Composite Using Ball Milling in a Methanol Medium: Positive Role of Boron Oxide

  • Fahad Saad Alghamdi
  • M. ShahabuddinEmail author
  • Nasser S. Alzayed
  • Niyaz Ahamad Madhar
  • Jafar M. Parakkandy
  • M. A. Majeed Khan
  • Aslam Khan
  • Md. Shahriar Al Hossain
Original Paper
  • 215 Downloads

Abstract

In the present work, we report on the role of the methanol medium and ball-milling time in the substitution of carbon in carbon nanotube CNT-MgB2 superconductors. In our samples, we find that the CNTs are intact and well dispersed. However, the liquid medium (methanol) used for dispersion of the constituent materials is also acting as a source of C for substitution. However, the substitution of C from methanol is not direct; rather, B2O3, which had been considered as just an impurity, plays a positive role in binding the methanol molecules to the surface of B. The detailed mechanism of methanol absorption and the role of B2O3 and ball-milling time are presented here. In addition, we present the J C(H, T) data, which show that approximately 3% of C substitution provides the best critical current density at 20 K.

Keywords

MgB2 Superconductivity CNT Chemisorption Ball milling Critical current density Pinning force 

Notes

Acknowledgements

The authors would like to extend their sincere appreciation to the Deanship of Scientific Research at King Saud University for its funding of this research through the Research Group Project No. RGP-290.

References

  1. 1.
    Nagamatsu, J., et al.: Superconductivity at 39 K in magnesium diboride. Nature 410(6824), 63–64 (2001)ADSCrossRefGoogle Scholar
  2. 2.
    Dou, S.X., et al.: Enhancement of the critical current density and flux pinning of MgB2 superconductor by nanoparticle SIC doping. Appl. Phys. Lett. 81(18), 3419–3421 (2002)ADSCrossRefGoogle Scholar
  3. 3.
    Kim, J.H., et al.: The doping effect of multiwall carbon nanotube on MgB2/Fe superconductor wire. J Appl. Phys., 2006. 100(1)Google Scholar
  4. 4.
    Wilke, R.H.T., et al.: Systematic effects of carbon doping on the superconducting properties of Mg(B1−xCx)2. Phys. Rev. Lett. 92(21), 217003 (2004)ADSCrossRefGoogle Scholar
  5. 5.
    Ma, Y.W., et al.: Significantly enhanced critical current densities in MgB2 tapes made by a scaleable nanocarbon addition route. Appl. Phys. Lett., 2006. 88(7)Google Scholar
  6. 6.
    Susner, M.A., et al.: Influence of Mg/B ratio and SiC doping on microstructure and high field transport J(c) in MgB2 strands. Phys. C-Superconductivity Appl. 456(1-2), 180–187 (2007)ADSCrossRefGoogle Scholar
  7. 7.
    Collings, E.W., et al.: Prospects for improving the intrinsic and extrinsic properties of magnesium diboride superconducting strands. Superconductor Sci. Technol., 2008. 21(10)Google Scholar
  8. 8.
    Ye, S.J., et al.: Comparison of SiC and/or toluene additives to the critical current density of internal Mg diffusion-processed MgB2 wires. Phys. C-Superconductivity Appl. 484, 167–170 (2013)ADSCrossRefGoogle Scholar
  9. 9.
    Yamamoto, A., et al.: Reactivity of carbides in synthesis of MgB2 bulks. Phys. C-Superconductivity Appl. 445, 801–805 (2006)ADSCrossRefGoogle Scholar
  10. 10.
    Yamamoto, A., et al.: Effects of B4C doping on critical current properties of MgB2 superconductor. Supercond. Sci. Technol. 18(10), 1323–1328 (2005)ADSCrossRefGoogle Scholar
  11. 11.
    Dou, S.X., et al.: Mechanism of enhancement in electromagnetic properties of MgB2 by nano SiC doping. Phys. Rev. Lett., 2007. 98(9)Google Scholar
  12. 12.
    Yeoh, W.K., et al.: Effect of carbon substitution on the superconducting properties of MgB2 doped with multi-walled carbon nanotubes and nano carbon. IEEE Trans. Appl. Supercond. 17(2), 2929–2932 (2007)ADSCrossRefGoogle Scholar
  13. 13.
    Cheng, C.H., et al.: Doping effect of nano-diamond on superconductivity and flux pinning in MgB2. Supercond. Sci. Technol. 16(10), 1182–1186 (2003)ADSCrossRefGoogle Scholar
  14. 14.
    Dou, S.X., et al.: Effect of carbon nanotube doping on critical current density of MgB2 superconductor. Appl. Phys. Lett. 83(24), 4996–4998 (2003)ADSCrossRefGoogle Scholar
  15. 15.
    Serquis, A., et al.: Correlated enhancement of H-c2 and J(c) in carbon nanotube doped MgB2. Supercond. Sci. Technol. 20(4), L12–L15 (2007)CrossRefGoogle Scholar
  16. 16.
    Shekhar, C., et al.: Improved critical current density of MgB2-carbon nanotubes composite. J. Nanosci. Nanotechnol. 7(6), 1804–1809 (2007)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Patel, D., et al.: Multiwalled carbon nanotube-derived superior electrical, mechanical and thermal properties in MgB2 wires. Scr. Mater. 88, 13–16 (2014)CrossRefGoogle Scholar
  18. 18.
    Treacy, M.M.J., Ebbesen, T.W., Gibson, J.M.: Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature 381(6584), 678–680 (1996)ADSCrossRefGoogle Scholar
  19. 19.
    Yeoh, W.K., et al.: Improving flux pinning of MgB2 by carbon nanotube doping and ultrasonication. Supercond. Sci. Technol. 19(2), L5–L8 (2006)CrossRefGoogle Scholar
  20. 20.
    Lekawa-Raus, A., et al.: Electrical properties of carbon nanotube based fibers and their future use in electrical wiring. Adv. Funct. Mater. 24(24), 3661–3682 (2014)CrossRefGoogle Scholar
  21. 21.
    Singh, K.P., et al.: Phase formation and superconductivity of fe-TUBE encapsulated and vacuum-annealed MgB2. Modern Phys. Lett. B 20(27), 1763–1769 (2006)ADSCrossRefGoogle Scholar
  22. 22.
    Parakkandy, J.M., et al.: Effect of ball milling time on critical current density of glucose-doped MgB2 superconductors. J. Supercond. Nov. Magn. 28(2), 475–479 (2015)CrossRefGoogle Scholar
  23. 23.
    Xu, X., et al.: Improved J(c) of MgB2 superconductor by ball milling using different media. Supercond. Sci. Technol. 19(11), L47–L50 (2006)CrossRefGoogle Scholar
  24. 24.
    Wei, J.Q., et al.: Structure and superconductivity of MgB2-carbon nanotube composites. Mater. Chem. Phys. 78(3), 785–790 (2003)CrossRefGoogle Scholar
  25. 25.
    Dong, C.: Powderx: Windows-95-based program for powder X-ray diffraction data processing. J. Appl. Crystallogr. 32(4), 838 (1999)CrossRefGoogle Scholar
  26. 26.
    Lutterotti, L.: Total pattern fitting for the combined size–strain–stress–texture determination in thin film diffraction. Nucl. Instrum. Methods Phys. Res., Sect. B 268(3–4), 334–340 (2010)ADSCrossRefGoogle Scholar
  27. 27.
    Lutterotti, L., et al.: Texture, residual stress and structural analysis of thin films using a combined X-rayx analysis. Thin Solid Films 450(1), 34–41 (2004)ADSCrossRefGoogle Scholar
  28. 28.
    Avdeev, M., et al.: Crystal chemistry of carbon-substituted MgB2. Phys. C-Superconductivity Appl. 387 (3-4), 301–306 (2003)ADSCrossRefGoogle Scholar
  29. 29.
    Jun, B.H., Park, S.D., Kim, C.J.: Refinement and carbon incorporation effects on the superconducting properties of MgB2 through wet milling process of low purity boron powder. J. Alloys Compd. 535, 27–32 (2012)CrossRefGoogle Scholar
  30. 30.
    Low, M.J.D., Harano, Y.: An infrared study of the reaction of methanol with siliceous surfaces. J. Res. Institute for Catalysis, Hokkaido University 16(1), 271–286 (1968)Google Scholar
  31. 31.
    Low, M.J.D., Harano, Y.: An infrared study of the reaction of methanol with siliceous surfaces. J. Res. Institute for Catalysis, Hokkaido University 16(1), 271–286 (1968)Google Scholar
  32. 32.
    Low, M.J.D., Harano, Y.: An infrared study of the reaction of methanol with siliceous surfaces. J. Res. Institute for Catalysis, Hokkaido University 16(1), 271–286 (1968)Google Scholar
  33. 33.
    Rowell, J.: The widely variable resistivity of MgB2 samples. Supercond. Sci. Technol. 16(6), R17–R27 (2003)ADSCrossRefGoogle Scholar
  34. 34.
    Lee, S., et al.: Carbon-substituted MgB2 single crystals. Phys. C-Superconductivity Appl. 397(1-2), 7–13 (2003)ADSCrossRefGoogle Scholar
  35. 35.
    Bean, C.P.: Magnetization of high-field superconductors. Rev. Mod. Phys. 36(1), 31–39 (1964)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Fahad Saad Alghamdi
    • 1
  • M. Shahabuddin
    • 2
    Email author
  • Nasser S. Alzayed
    • 2
  • Niyaz Ahamad Madhar
    • 2
  • Jafar M. Parakkandy
    • 3
  • M. A. Majeed Khan
    • 4
  • Aslam Khan
    • 4
  • Md. Shahriar Al Hossain
    • 5
  1. 1.National Center for NanotechnologyKing Abdulaziz City for Science and Technology (KACST)RiyadhSaudi Arabia
  2. 2.Department of Physics and Astronomy, College of ScienceKing Saud University (KSU)RiyadhSaudi Arabia
  3. 3.Department of Physics, College of Science and Humanity StudiesPrince Sattam bin Abdulaziz UniversityAlkharjSaudi Arabia
  4. 4.King Abdullah Institute for Nanotechnology (KAIN)King Saud UniversityRiyadhSaudi Arabia
  5. 5.Institute for Superconducting and Electronic Materials, Australian Institute for Innovative MaterialsUniversity of WollongongNorth WollongongAustralia

Personalised recommendations