Skip to main content
Log in

Dynamic Magnetic Features of the Mixed Ising System on the Bilayer Square Lattice

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

In order to study the dynamic magnetic features of the mixed spin-1 and spin-5/2 Ising system, we have used the mean-field theory (MFT) based on the Glauber-type stochastic dynamics on the bilayer square lattice (BSL). By employing the Master equation, dynamic equations describing the behavior of the system are derived. The average order parameters and dynamic order parameters are studied for different values of exchange interactions, oscillating magnetic field, and temperature. The complete dynamic phase diagrams (DPDs) are obtained for the ferromagnetic/ferromagnetic (FM/FM), ferromagnetic/antiferromagnetic (FM/AFM), and antiferromagnetic/antiferromagnetic (AFM/AFM) interactions in the different planes, and the role of the interaction in the Hamiltonian on the DPDs is explored. It is found that the DPDs display richer dynamic behavior for this mixed Ising system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Temizer, Ü.: Dynamic magnetic properties of the mixed spin-1 and spin-3/2 Ising system on a two-layer square lattice. J. Magn. Magn. Mater. 372, 47–58 (2014)

    Article  ADS  Google Scholar 

  2. Ertaş, M., Keskin, M.: Dynamic magnetic behavior of the mixed-spin bilayer system in an oscillating field within the mean-field theory. Phys. Lett. A 376, 2455–2466 (2012)

    Article  ADS  Google Scholar 

  3. Deviren, B., Akbudak, S., Keskin, M.: Mixed spin-1 and spin-3/2 Ising system with two alternative layers of a honeycomb lattice within the effective-field theory. Solid State Commun. 151, 193–198 (2011)

    Article  ADS  Google Scholar 

  4. Kantar, E.: The Dynamic hysteresis curves and compensation types of kinetic bilayer honeycomb lattice system with AB stacking geometry. J. Supercond. Nov. Magn. 28, 3387–3395 (2015)

    Article  Google Scholar 

  5. Kantar, E.: Dynamic phase transitions and the effects of frequency of oscillating magnetic field on the dynamic phase diagrams in the bilayer honeycomb lattice with AB stacking geometry. Phase Trans. 89, 971–985 (2016)

    Article  Google Scholar 

  6. žukovič, M., Bobák, A.: Critical behavior of a triangular lattice Ising AF/FM bilayer. Phys. Lett. A 380, 1087–1092 (2016)

    Article  ADS  Google Scholar 

  7. Kharitonov, M.: Canted antiferromagnetic phase of the v = 0 quantum hall state in bilayer graphene. Phys. Rev. Lett 109, 046803 (2012)

    Article  ADS  Google Scholar 

  8. Freitag, F., Trbovic, J., Weiss, M., Schönenberger, C.: Spontaneously gapped ground state in suspended bilayer graphene. Phys. Rev. Lett. 108, 076602 (2012)

    Article  ADS  Google Scholar 

  9. Feldman, B.E., Martin, J., Yacoby, A.: Broken-symmetry states and divergent resistance in suspended bilayer graphene. Nature Phys. 5, 889–893 (2009)

    Article  ADS  Google Scholar 

  10. Zhao, Y., Cadden-Zimansky, P., Jiang, Z., Kim, P.: Symmetry breaking in the zero-energy landau level in bilayer graphene. Phys. Rev. Lett. 104, 066801 (2010)

    Article  ADS  Google Scholar 

  11. Weitz, R.T., Allen, M.T., Feldman, B.E., Martin, J., Yacoby, A.: Broken-symmetry states in doubly gated suspended bilayer graphene. Science 330, 812–816 (2010)

    Article  ADS  Google Scholar 

  12. Kane, C.L., Mele, E.: Z2 topological order and the quantum spin hall effect. Phys. Rev. Lett. 95, 146802 (2005)

    Article  ADS  Google Scholar 

  13. Hosseini, M.V., Zareyan, M.: Model of an exotic chiral superconducting phase in a graphene bilayer. Phys. Rev. Lett. 108, 147001 (2012)

    Article  ADS  Google Scholar 

  14. Yan, X.Z.: Superconductivity in the quasi-two-dimensional Hubbard model. Phys. Rev. B 71, 104520 (2005)

    Article  ADS  Google Scholar 

  15. Mezzacapo, F., Boninsegni, M.: Ground-state phase diagram of the quantum J1-J2 model on the honeycomb lattice. Phys. Rev. B 85, 060402 (2012)

    Article  ADS  Google Scholar 

  16. Anderson, P.W.: The resonating valence bond state in L a 2 C u O 4 and superconductivity. Science 235, 1196–1198 (1987)

    Article  ADS  Google Scholar 

  17. Wu, W., Chen, Y.H., Tao, H.S., Tong, N.H., Liu, W.M.: Interacting Dirac fermions on honeycomb lattice. Phys. Rev. B 82, 245102 (2010)

    Article  ADS  Google Scholar 

  18. Vafek, O.: Interacting fermions on the honeycomb bilayer: from weak to strong coupling. Phys. Rev. B 82, 205106 (2010)

    Article  ADS  Google Scholar 

  19. Baibich, M.N., Broto, J.M., Fert, A., Nguyen Van Dau, F., Petroff, F., Etienne, P., Creuzet, G., Friederich, A., Chazelas, J.: Giant Magnetoresistance of (001)Fe/(001)Cr Magnetic Superlattices. Phys. Rev. Lett. 61, 2472–2475 (1988)

    Article  ADS  Google Scholar 

  20. Binasch, G., Grünberg, P., Saurenbach, F., Zinn, W.: Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. Phys. Rev. B 39, 4828–4830 (1989)

    Article  ADS  Google Scholar 

  21. Phan, M.-H., Yu, S.-C.: Review of the magnetocaloric effect in manganite materials. J. Magn. Magn. Mater. 308, 325–340 (2009)

    Article  ADS  Google Scholar 

  22. Sayama, J., Asahi, T., Mizutani, K., Osaka, T.: Newly developed SmCo5 thin film with perpendicular magnetic anisotropy. J. Phys. D: Appl. Phys. 37, L1–L4 (2004)

    Article  ADS  Google Scholar 

  23. Wu, R., Freeman, A.J.: Structural and magnetic properties of Fe/Ni(111). Phys. Rev. B 45, 7205–7210 (1992)

    Article  ADS  Google Scholar 

  24. Donath, M.: Magnetic order and electronic structure in thin films. J. Phys. Condens. Matter. 11, 9421–9436 (1999)

    Article  ADS  Google Scholar 

  25. Sun, S.W., O’Handley, R.C.: Surface magnetoelastic coupling. Phys. Rev. Lett. 66, 2798–2801 (1991)

    Article  ADS  Google Scholar 

  26. Bochi, G., Song, O., O’Handley, R.C.: Surface magnetoelastic coupling coefficients of single-crystal fcc Co thin films. Phys. Rev. B 50, 2043–2046 (1994)

    Article  ADS  Google Scholar 

  27. Deviren, B., Polat, Y., Keskin, M.: Phase diagrams in mixed spin-3/2 and spin-2 Ising system with two alternative layers within the effective-field theory. Chin. Phys. B 20, 060507–1-060507-13 (2011)

    Article  Google Scholar 

  28. Masrour, R., Jabar, A., Benyoussef, A., Hamedoun, M.: Spin-1 and -2 bilayer Bethe lattice: A Monte Carlo study. J. Magn. Magn. Mater. 401, 700–705 (2016)

    Article  ADS  Google Scholar 

  29. Deviren, B., Canko, O., Keskin, M.: Effective-field theory of the Ising model with three alternative layers on the honeycomb and square lattices. J. Magn. Magn. Mater. 320, 2291–2299 (2008)

    Article  ADS  Google Scholar 

  30. Ertaş, M.: The dynamic magnetic behaviors of the Blume-Capel Ising bilayer system. Mod. Phys. Lett. B 29, 2455–2466 (2016)

    MathSciNet  Google Scholar 

  31. Feraoun, A., Zaim, A., Kerouad, A.: Phase diagrams of a finite superlattice with two disordered interfaces: Monte Carlo simulation. J. Magn. Magn. Mater. 394, 354–360 (2015)

    Article  ADS  Google Scholar 

  32. Albayrak, E.: The hysteresis loops of FM/AFM two-layer Bethe lattice. Phase Trans. 82, 541–550 (2009)

    Article  Google Scholar 

  33. Hung, L.S., Hu, J.F., Chen, J.S.: Critical Fe thickness for effective coercivity reduction in FePt/Fe exchange-coupled bilayer. J. Magn. Magn. Mater. 324, 1242–1247 (2012)

    Article  ADS  Google Scholar 

  34. Li, J.: Magnetostriction of FM/TbFe (FM = Fe, Py-permalloy, FeCo) coupled bilayer. J. Magn. Magn. Mater. 324, 1512–1515 (2012)

    Article  ADS  Google Scholar 

  35. Pan, L., Liu, H.J., Wen, Y.W., Tan, X.J., Lv, H.Y., Shi, J., Tang, X.F.: First-principles study of monolayer and bilayer honeycomb structures of group-IV elements and their binary compounds. Phys. Lett. A 375, 614–619 (2011)

    Article  ADS  Google Scholar 

  36. Bayreuther, G., Bensch, F., Kottler, V.: Quantum oscillations of properties in magnetic multilayers. J. Appl. Phys. 79, 4509 (1996)

    Article  ADS  Google Scholar 

  37. Camerero, J., Pennec, Y., Vogel, J., Bonfim, M., Pizzini, S., Ernult, F., Fettar, F., Garcia, F., Lançon, L., Billard, B., Dieny, B., Tagliaferri, A., Brookes, N.B.: Perpendicular interlayer ioupling in N i 80 F e 20/N i O/C o trilayers. Phys. Rev. Lett. 91, 027201 (2003)

    Article  ADS  Google Scholar 

  38. Kida, A., Yamamoto, C., Doi, M., Asano, H., Matsui, M.: Magnetoresistance of trilayer films with F e 3 O 4. J. Magn. Magn. Mater. 272-276, E1559–E1561 (2004)

    Article  ADS  Google Scholar 

  39. Yoo, Y.-G., Yu, S.-C., Kim, P.D., Belyaev, B.A., Mahlaev, A.M., Khalyapin, D.L.: The study of exchange coupling in NiFe/Cu/IrMn trilayer structures by MOKE and FMR measurements. J. Magn. Magn. Mater. 304, E62–E64 (2006)

    Article  Google Scholar 

  40. Patrin, G.S., Lee, C.-G., Turpanov, I.A., Zharkov, S.M., Velikanov, D.A., Maltsev, V.K., Lantsev, L.A., Lantsev, V.V.: Dependence of magnetic properties on ferromagnetic layer thickness in trilayer Co/Ge/Co films with granular semiconducting spacer. J. Magn. Magn. Mater. 306, 218–222 (2006)

    Article  ADS  Google Scholar 

  41. Chen, S.K., Yuan, F.T., Liao, W.M., Hsu, C.W., Horng, L.: Magnetic properties and microstructure study of high coercivity Au/FePt/Au trilayer thin films. J. Magn. Magn. Mater. 303, E251–E254 (2006)

    Article  ADS  Google Scholar 

  42. Ogawa, T., Shindo, H., Takeuchi, H., Koizumi, Y.: Magnetoresistance of N i 0.8 B i 0.2/M n O 3/M g O/C o trilayer devices. J. Magn. Magn. Mater. 316, E868–E871 (2007)

    Article  ADS  Google Scholar 

  43. Chesman, C., Bezerra, C.G., Albuquerque, E.L., Mariz, A.M.: Crossover-behavior of the saturation magnetic fields of (100) and (110) Fe/Cr/Fe trilayers. Phys. Lett. A 354, 221–225 (2006)

    Article  ADS  Google Scholar 

  44. Patrin, G.S., Yakovchuk, V.Yu., Velikanov, D.A.: Influence of semimetal spacer on magnetic properties in NiFe/Bi/NiFe trilayer films. Phys. Lett. A 363, 164–167 (2007)

    Article  ADS  Google Scholar 

  45. Fukushima, N., Honecker, A., Wessel, S., Brenig, W.: Thermodynamic properties of ferromagnetic mixed-spin chain systems. Phys. Rev. B 69, 174430 (2004)

    Article  ADS  Google Scholar 

  46. Deviren, B., Batı, M., Keskin, M.: The effective-field study of a mixed spin-1 and spin-5/2 Ising ferrimagnetic system. Phys. Scripta 79, 065006 (2009)

    Article  ADS  MATH  Google Scholar 

  47. Yessoufou, R.A., Bekhechi, S., Hontinfinde, F.: Numerical study of the mixed spin-1 and spin-5/2 Ising ferrimagnetic system. Eur. Phys. J. B 81, 137–146 (2011)

    Article  ADS  Google Scholar 

  48. Yiğit, A., Albayrak, E.: Critical properties of mixed spin-1 and spin-5/2 with equal and unequal crystal fields. Chin. Phys. B 21, 020511 (2012)

    Article  Google Scholar 

  49. Keskin, M., Canko, O., Batı, M.: Dynamic phase diagrams of a mixed spin-1 and spin-5/2 Ising system in an oscillating magnetic field. J. Kor. Phys. Soc 55, 1344–1356 (2009)

    Article  Google Scholar 

  50. Özkılıç, A., Temizer, Ü.: Dynamic phase transitions and compensation temperatures in the mixed spin-1 and spin-5/2 Ising system on alternate layers of a hexagonal lattice. J. Magn. Magn. Mater. 330, 55–65 (2013)

    Article  ADS  Google Scholar 

  51. Glauber, R.J.: Time Dependent Statistics of the Ising Model. J. Math. Phys. 4, 294–307 (1963)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  52. Batı, M., Ertaş, M.: Dynamic magnetic hysteresis properties in a two-dimensional mixed Ising system designed with integer and half-integer spins. J. Supercond. Nov. Magn. 29, 2835–2841 (2016)

    Article  Google Scholar 

  53. Yang, W.Y., Cao, W., Chung, T.S., Morris, J.: Applied numerical methods using MATLAB, pp 269–273. Wiley, Hoboken (2005)

    Book  MATH  Google Scholar 

  54. Jackiewicz, Z., Lo, E.: The numerical solution of neutral functional differential equations by Adams predictor- corrector methods. App. Num. Math. 8, 477–491 (1991)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ü. Temizer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Temizer, Ü., Demir, L. Dynamic Magnetic Features of the Mixed Ising System on the Bilayer Square Lattice. J Supercond Nov Magn 31, 889–903 (2018). https://doi.org/10.1007/s10948-017-4260-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-017-4260-9

Keywords

Navigation