Skip to main content
Log in

Strain-Induced Tunable Magnetic Interaction in (Mo,Co)S2/(Si,Co)C Heterostructure

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Using the first-principles method, we reported tunable magnetic interaction in Co-doped MoS2/SiC van der Waals (vdW) heterostructures under normal strain. The interlayer interaction between (Mo,Co)S2 and (Si,Co)C monolayers is antiferromagnetic (AFM) at the equilibrium state. Our results reveal that the compressive strain has much influence on the interlayer interaction of the vdW heterostructures and the interlayer interaction switched from AFM to ferromagnetic (FM). By contrast, under a tensile strain, the interlayer interaction between (Mo,Co)S2 and (Si,Co)C monolayers is always AFM. The results show that the interaction between (Mo,Co)S2 and (Si,Co)C monolayers changes from AFM to FM, which could be explained by the superexchange and the pd exchange, respectively. Moreover, according to the magnetic anisotropy energy (MAE), the easy axis of the magnetization is parallel to the a-axis in current vdW heterostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A.: Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)

    Article  ADS  Google Scholar 

  2. Bonaccorso, F., Colombo, L., Yu, G., Stoller, G., Tozzini, V., Ferrari, A.C., Ruoff, R.S., Pellegrini, V.: Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science 347, 41–50 (2015)

    Article  ADS  Google Scholar 

  3. Geim, K.: Graphene: status and prospects. Science 324, 1530–1534 (2009)

    Article  ADS  Google Scholar 

  4. Woessner, A., Lundeberg, M.B., Gao, Y., Principi, A., Alonso-Gonzalez, P., Carrega, M., Watanabe, K., Taniguchi, T., Vignale, G., Polini, M., Hone, J., Hillenbrand, R., Koppens, F.H.L.: Highly confined low-loss plasmons in graphene-boron nitride heterostructures. Nat. Mater. 14, 421–425 (2015)

    Article  ADS  Google Scholar 

  5. Yankowitz, M., Larentis, S., Kim, K., Xue, J., McKenzie, D., Huang, S., Paggen, M., Ali, M.N., Cava, R.J., Tutuc, E., LeRoy, B.J.: Intrinsic disorder in graphene on transition metal dichalcogenide heterostructures. Nano Lett. 15, 1925–1929 (2015)

    Article  ADS  Google Scholar 

  6. Deng, Y.X., Luo, Z., Conrad, N.J., Liu, H., Gong, Y.J., Najmaei, S., Ajayan, P.M., Lou, J., Xu, X.F., Ye, P.D.: Black phosphorus-monolayer MoS2 van der Waals heterojunction p-n diode. ACS Nano 8, 8292–8299 (2014)

    Article  Google Scholar 

  7. Pereira, V.M., Neto, A.H.C.: Strain engineering of graphene’s electronic structure. Phys. Rev. Lett. 103, 046801–046804 (2009)

    Article  ADS  Google Scholar 

  8. Tang, S.B., Yu, J.P., Liu, L.X.: Tunable doping and band gap of graphene on functionalized hexagonal boron nitride with hydrogen and fluorine. Phys. Chem. Chem. Phys. 15, 5067–5077 (2013)

    Article  Google Scholar 

  9. Nigam, S., Gupta, S.K., Majumder, C., Pandey, R.: Modulation of band gap by an applied electric field in silicene-based hetero-bilayers. Phys. Chem. Chem. Phys. 17, 11324–11328 (2015)

    Article  Google Scholar 

  10. Xia, C.X., Xue, B., Wang, T.X., Peng, Y.T., Jia, Y.: Interlayer coupling effects on schottky barrier in the arsenene-graphene van der Waals heterostructures. Appl. Phys. Lett. 107, 193107–193111 (2015)

    Article  ADS  Google Scholar 

  11. Avalos-Ovando, O., Mastrogiuseppe, D., Ulloa, S.E.: Symmetries and hybridization in the indirect interaction between magnetic moments in MoS2 nanoflakes. Phys. Rev. B 94, 245429–245439 (2016)

    Article  ADS  Google Scholar 

  12. Wang, Q.H., Kalantar-Zadeh, K., Kis, A., Coleman, J.N., Strano, M.S.: Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7, 699–712 (2012)

    Article  ADS  Google Scholar 

  13. Xu, M., Liang, T., Shi, M., Chen, H.: Graphene-like two-dimensional materials. Chem. Re. 113, 3766–3798 (2013)

    Article  Google Scholar 

  14. Javan, M.B.: Adsorption of CO and NO molecules on SiC nanotubes and nanocages: DFT study. Surf. Sci. 635, 128–142 (2015)

    Article  ADS  Google Scholar 

  15. Wu, Y., Zhou, L.P., Du, X.Z., Yang, Y.P.: Near-field radiative heat transfer between two SiC plates with/without coated metal films. J. Nanosci. Nanotechnol. 15, 3017–3024 (2015)

    Article  Google Scholar 

  16. Javan, M.B.: Electronic and magnetic properties of monolayer SiC sheet doped with 3d-transition metals. J. Magn. Magn. Mater. 401, 656–661 (2016)

    Article  ADS  Google Scholar 

  17. Bekaroglu, E., Topsakal, M., Cahagirov, S., Ciraci, S.: First-principles study of defects and adatoms in silicon carbide honeycomb structures. Phys. Rev. B 81, 075433–075441 (2010)

    Article  ADS  Google Scholar 

  18. Andriotis, A.N., Menon, M.: Tunable magnetic properties of transition metal doped MoS2. Phys. Rev. B 90, 125304–125310 (2014)

    Article  ADS  Google Scholar 

  19. Cheng, Y., Zhu, Z., Mi, W., Guo, Z., Schwingenschlogl, U.: Prediction of two-dimensional diluted magnetic semiconductors: doped monolayer MoS2 systems. Phys. Rev. B 87, 100401–100404 (2013)

    Article  ADS  Google Scholar 

  20. Ramasubramaniam, A., Naveh, D.: Mn-doped monolayer MoS2: an atomically thin dilute magnetic semiconductor. Phys. Rev. B 87, 195201–195207 (2013)

    Article  ADS  Google Scholar 

  21. Tao, P., Guo, H.H., Yang, T., Zhang, Z.D.: Strain-induced magnetism in MoS2 monolayer with defects. J. Appl. Phys. 115, 054305–054309 (2014)

    Article  ADS  Google Scholar 

  22. Zheng, H.L., Yang, B.S., Wang, D.D., Han, R.L., Du, X.B., Yan, Y.: Tuning magnetism of monolayer MoS2 by doping vacancy and applying strain. Appl. Phys. Lett. 104, 132403–132407 (2014)

    Article  ADS  Google Scholar 

  23. Kresse, G., Furthmüller, J.: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996)

    Article  ADS  Google Scholar 

  24. Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996)

    Article  ADS  Google Scholar 

  25. Kresse, G., Joubert, D.: From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999)

    Article  ADS  Google Scholar 

  26. Grimme, S.: Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27, 1787–1799 (2006)

    Article  Google Scholar 

  27. Ju, W., Li, T., Wang, H., Yong, Y., Li, X.: Hybrid functional studies on the electronic properties of ultrathin black phosphorus under normal strain. Comput. Mater. Sci. 109, 20–24 (2015)

    Article  Google Scholar 

  28. Hu, L., Zhao, J., Yang, J.: Nano-scale displacement sensing based on van der Waals interactions. Nanoscale 7, 8962–8967 (2015)

    Article  ADS  Google Scholar 

  29. Nayak, A.P., Bhattacharyya, S., Zhu, J., Liu, J., Wu, X., Pandey, T., Jin, C., Singh, A.K., Akinwande, D., Lin, J.F.: Pressure-induced semiconducting to metallic transition in multilayered molybdenum disulphide. Nat. Commun. 5, 3731–3739 (2014)

    Article  ADS  Google Scholar 

  30. Goodenough, J.B.: Theory of the role of covalence in the perovskite-type manganites [La, M(II)]MnO3. Phys. Rev. 100, 564–673 (1955)

    Article  ADS  Google Scholar 

  31. Kanamori, J.: Superexchange interaction and symmetry properties of electron orbitals. J. Phys. Chem. Solids 10, 87–98 (1959)

    Article  ADS  Google Scholar 

  32. Sato, K., Bergqvist, L., Kudrnovský, J., Dederichs, P.H., Eriksson, O., Turek, I., Sanyal, B., Bouzerar, G., Katayama-Yoshida, H., Dinh, V.A., Fukushima, T., Kizaki, H., Zeller, R.: First-principles theory of dilute magnetic semiconductors. Rev. Mod. Phys. 82, 1633–1690 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We thank the Key Laboratory of Polar Materials and Devices, Ministry of Education, East China Normal University (ECNU). Our work is supported by the Supercomputer Center of ECNU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Luo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, M., Xu, Y.E. & Song, Y.X. Strain-Induced Tunable Magnetic Interaction in (Mo,Co)S2/(Si,Co)C Heterostructure. J Supercond Nov Magn 31, 597–601 (2018). https://doi.org/10.1007/s10948-017-4246-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-017-4246-7

Keywords

Navigation