Stability Considerations Using a Microscopic Stability Model Applied to a 2G Thin Film Coated Superconductor

  • Harald ReissEmail author
Original Paper


A numerical, finite element simulation of local temperature fields, critical current and transport current distributions is applied to a 2G thin film coated high-temperature superconductor. The focus is on simulation of quenches originating from transport current locally exceeding critical current density. As in previous reports, a statistical treatment of superconductor parameters (critical temperature, current and magnetic field) is applied for this analysis; it shall take into account uncertainties possibly arising from shortcomings in conductor manufacture or during measurements of their properties. The results of the calculations are used as quasi-boundary (driving) conditions for a subsequent transient microscopic numerical stability analysis. Traditionally, stability analysis usually applies analytic stability functions that incorporate conventional, phonon-related timescales, t and disturbances. The question is whether decay of electron pairs and subsequent relaxation of the excited state to a new dynamic equilibrium carrier concentration, the “electron aspect” of the stability problem, under the same disturbances, proceeds on another timescale, t . Is this timescale identical to the traditional (phonon) timescale, t? If not, how large are the differences? The recently reported microscopic stability model, now applied to a thin film conductor, is consulted to find an answer to these questions. A time limit, t Quench, can be extracted from the simulations, as the time of immediate onset of a quench. This is a new approach in stability considerations since, conventionally, a temperature limit, T < T Crit, is set as stability criterion. If electrical operation or cooling conditions cannot immediately respond to this challenge, the thin film superconductor, if this time limit is exceeded, will hardly be able to return to zero loss current transport.


Superconductor Random materials parameters Dynamic equilibrium Relaxation Boson-mediated interaction Time of flight-concept Stability against quench 


  1. 1.
    Reiss, H.: Finite element simulation of temperature and current distribution in a superconductor, and a cell model for flux flow resistivity–interim results. J. Supercond. Novel Magn. 29(6), 1405–1422 (2016). doi: 10.1007/s10948-016-3492-4 CrossRefGoogle Scholar
  2. 2.
    Reiss, H.: A microscopic model of superconductor stability. J. Supercond. Novel Magn. 26(3), 593–617 (2013)CrossRefGoogle Scholar
  3. 3.
    Wilson, M.N.: Superconducting magnets. In: Scurlock, R.G. (ed.) Monographs on cryogenics. reprinted paperback. Oxford University Press, New York (1989)Google Scholar
  4. 4.
    Dresner, L.: Stability of superconductors. In: St, W. (ed.) Selected topics in superconductivity. Plenum, New York (1995)Google Scholar
  5. 5.
    Blatt, J.M.: Theory of superconductivity. Academic Press, New York and London (1964)zbMATHGoogle Scholar
  6. 6.
    De Gennes, P.G.: Superconductivity of metals and alloys. W.A. Benjamin, Inc., New York and Amsterdam (1966)zbMATHGoogle Scholar
  7. 7.
    Tinkham, M.: Introduction to superconductivity. reprinted Ed., Robert E. Krieger Publ. Co., Malabar, Florida (1980)Google Scholar
  8. 8.
    Orlando, T.P., Delin, K.A.: Foundations of applied superconductivity. Addison-Wesley, Reading Mass (1991)Google Scholar
  9. 9.
    Seeger, B. (ed.): Handbook of applied superconductivity, vol. 1. Institute of Physics Publishing, Bristol and Philadelphia, IOP (1998)Google Scholar
  10. 10.
    Scanlan, R.M., Malozemoff, A.P., Larbalestier, D.C.: Superconducting materials for large scale applications. Proc. IEEE 92(10), 1639–1654 (2004)CrossRefGoogle Scholar
  11. 11.
    Whitaker, S.t.: Fundamental principles of heat transfer. Pergamon, New York (1977)Google Scholar
  12. 12.
    Reiss, H.: Superconductor stability against quench and its correlation with current propagation and limiting. J. Supercond. Novel Magn. 28(10), 2979–2999 (2015)CrossRefGoogle Scholar
  13. 13.
    Knaak, W., Klemt, E., Sommer, M., Abeln, A., Reiss, H.: Final Report (in German): Entwicklung von wechselstromtauglichen Supraleitern mit hohen Übergangstemperaturen für die Energietechnik, Bundesministerium für Forschungund Technologie Forschungsvorhaben 13 N 5610 A, Abschlußbericht Asea Brown Boveri AG, Forschungszentrum Heidelberg (1994)Google Scholar
  14. 14.
    Duckworth, R.C.: Contact resistance and normal zone formation in coated yttrium barium copper oxide superconductors, Dissertation, Nuclear Engineering and Engineering Physics, University of Wisconsin-Madison (2001)Google Scholar
  15. 15.
    Reiss, H., Troitsky, O.Yu.: Superconductor stability revisited: impacts from coupled conductive and thermal radiative transfer in the solid. J. Supercond. Novel Magn. 27(3), 717–734 (2014)CrossRefGoogle Scholar
  16. 16.
    Ainslie, M.D., Hu, D., Zermeno, V.M.R., Grilli, F.: Numerical simulation of the performance of high-temperature superconducting coils. J. Supercond. Novel Magn. 30, 1987–1992 (2017)CrossRefGoogle Scholar
  17. 17.
    Shengnan, Z., Zermeno, V.M.R., Grilli, F.: Simulation of stacks of high-temperature superconducting coated conductors magnetized by pulsed field magnetization using controlled magnetic density distribution coils. IEEE Trans. Appl. Supercond. 26(3) (2016)Google Scholar
  18. 18.
    Gray, K.E.: Steady state measurement of the quasiparticle lifetime in superconducting aluminium. J. Phys. F: Metal Phys. 1, 290–308 (1971)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    De Shalit, A., Feshbach, H.: Theoretical nuclear physics, vol. I: nuclear structure. Wiley, New York (1974)Google Scholar
  20. 20.
    Sandner, H., Neubronner, M.: Stoffwerte von reinen Metallen und Legierungen. In: VDI Wärmeatlas, 10th ed. (2006), Sect. Dea 1–15, in German 21 Indium Corp., Data sheet, Pb88Sn10Ag2Google Scholar
  21. 21.
    Smith, D.R., Fickett, F.R.: Low temperature properties of silver. J. Res. Natl. Inst. Stand. Technol. 100 (2), 119–171 (1995)CrossRefGoogle Scholar
  22. 22.
    Slifka, A.J., Filla, B.J., Phelps, J.M.: Thermal conductivity of magnesium oxide from absolute, steady-state measurements. J. Res. Natl. Inst. Stand. Technol. 103(4), 357–363 (1998)CrossRefGoogle Scholar
  23. 23.
    Sandner, H., Neubronner, M.: Stoffwerte von reinen Metallen und Legierungen. In: VDI Wärmeatlas, 10th ed. (2006), Sect. Dea 11, 12 (Data of NiMo28 2.4617), in GermanGoogle Scholar
  24. 24.
    Oberbach, K.: Saechtling Kunststofftaschenbuch, 28th ed., Carl Hanser, München, Wien, (2001) Tafel 4.5.2, in GermanGoogle Scholar
  25. 25.
    Neubronner, G.: Stoffwerte von Kunststoffen. In: German VDI heat atlas, 10th ed. (2006), Sect. Def 2, 3 (Polyamid), in GermanGoogle Scholar
  26. 26.
    Poole Jr., Ch. P., Datta, T., Farach, H.A.: Copper oxide superconductors. Wiley, New York (1988). Figure VII – 11Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of WuerzburgAm HublandGermany

Personalised recommendations