Skip to main content
Log in

Effect of High-Gradient Magnetic Field on Electrical Property of Carbon Nanotube-Polypyrrole Composite; Nanotube Separation Mechanism

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

High- and low-gradient magnetic fields are produced by resistor-inductor-capacitor (RLC) discharge apparatuses. The maximum magnetic field is 12.5 Tesla with 1-ms pulse duration. Multiwall carbon nanotube–polypyrrole composite is prepared. The samples are exposed to high- and low-gradient magnetic fields. To understand the behavior of carbon nanotubes (CNTs) in high-gradient magnetic fields (HGMFs), we theoretically calculated the equivalent magnetic susceptibility of a CNT in the gradient magnetic field. We found that the gradient force which is exerted on a CNT could be repellent or absorbent depending on the parallel and perpendicular susceptibilities of the CNT, as well as on the initial orientation of the CNT with respect to magnetic field direction. Four-probe studies show that the electrical conductivity of CNT composites decreases after exposure to a high-gradient magnetic field. Microscopic observation of the electrical current profile of composites reveals rearrangement of CNTs under HGMF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Jones, H., Siertsema, W.J., Richens, P.E., Newson, M., Saleh, P.M., Hickman, A.L.: Phys. B Condens. Matter 598, 294–265 (2001)

    Article  Google Scholar 

  2. Novickij, J., Kačianauskas, R., Filipavičius, V., Tolutis, R., Balevičius, S., žurauskienė, N.: Electron. Electr. Eng. Technol. 7, 19 (2004)

  3. Vanacken, J., Liang, L., Rosseel, K., Boon, W., Herlach, F.: Phys. B Condens. Matter 674, 294–295 (2001)

  4. Vaghar, M.R., Li, L., Eyssa, Y., Schneider-Muntau, H.J., Kratz, R.: Megagauss Magn. F. Gener. Its Appl. to Sci. Ultra-high Pulsed-Power Technol. - Proc. VIIIth Int. Conf. Megagauss Magn. F. Gener. Relat. Top., pp 124–127. World Scientific Publishing Co. Pte. Ltd., Singapore (2004)

  5. Klinovaja, J., Schmidt, M.J., Braunecker, B., Loss, D.: Phys. Rev. B 84, 85452 (2011)

    Article  ADS  Google Scholar 

  6. Jang, B.K., Sakka, Y.: Mater. Lett. 63, 2545 (2009)

    Article  Google Scholar 

  7. Xie, X., Mai, Y., Zhou, X.: Mater. Sci. Eng. R. Rep. 49, 89 (2005)

    Article  Google Scholar 

  8. Gonnet, P., Liang, Z., Choi, E.S., Kadambala, R.S., Zhang, C., Brooks, J.S., Wang, B., Kramer, L.: Curr. Appl. Phys. 6, 119 (2006)

    Article  ADS  Google Scholar 

  9. Ubrig, N., Shaver, J., Parra-Vasquez, A.N., Pasquali, M., Kono, J., Fagan, J.A., Portugall, O.: J. Low Temp. Phys. 159, 262 (2010)

    Article  ADS  Google Scholar 

  10. Takeyama, S., Nakamura, S., Uchida, K.: J. Phys. Conf. Ser. 51, 446 (2006)

    Article  Google Scholar 

  11. Khosla, A., Gray, B.L.: Mater. Lett. 63, 1203 (2009)

    Article  Google Scholar 

  12. Kimura, T., Ago, H., Tobita, M., Ohshima, S., Kyotani, M., Yumura, M.: Adv. Mater. 14, 1380 (2002)

    Article  Google Scholar 

  13. Choi, E.S., Brooks, J.S., Eaton, D.L., Al-Haik, M.S., Hussaini, M.Y., Garmestani, H., Li, D., Dahmen, K.: J. Appl. Phys. 94, 6034 (2003)

    Article  ADS  Google Scholar 

  14. Bonard, J., Stora, T., Salvetat, J., Maier, F., Stöckli, T., Duschl, C., Forró, L., de Heer, W.A., Châtelain, A.: Adv. Mater. 9, 827 (1997)

    Article  Google Scholar 

  15. Wang, Q., Dai, J., Li, W., Wei, Z., Jiang, J.: Compos. Sci. Technol. 68, 1644 (2008)

    Article  Google Scholar 

  16. Jang, B.K., Sakka, Y., Woo, S.K.: J. Phys. Conf. Ser. 156, 12005 (2009)

    Article  Google Scholar 

  17. Sharma, A., Tripathi, B., Vijay, Y.K.: J. Memb. Sci. 361, 89 (2010)

    Article  Google Scholar 

  18. Walters, D.A., Casavant, M.J., Qin, X.C., Huffman, C.B., Boul, P.J., Ericson, L.M., Haroz, E.H., O’Connell, M.J., Smith, K., Colbert, D.T., Smalley, R.E.: Chem. Phys. Lett. 338, 14 (2001)

    Article  ADS  Google Scholar 

  19. Islam, M.F., Milkie, D.E., Torrens, O.N., Yodh, A.G., Kikkawa, J.M.: Phys. Rev. B 71, 201401 (2005)

    Article  ADS  Google Scholar 

  20. Kono, J., Nicholas, R.J., Roche, S.: Carbon Nanotub. SE - 13. In: Jorio, A., Dresselhaus, G., Dresselhaus, M. (eds.) , pp 393–422. Springer, Berlin, Heidelberg (2008)

  21. Ajiki, H., Ando, T.: Phys. B Condens. Matter 216, 358 (1996)

    Article  ADS  Google Scholar 

  22. Yamamoto, M., Koshino, M., Ando, T.: J. Phys. Soc. Japan 77, 084705 (2008)

    Article  ADS  Google Scholar 

  23. Xiong, D., Liu, S., Chen, J.: Int. J. Miner. Process. 54, 111 (1998)

    Article  Google Scholar 

  24. Baik, S.K., Ha, D.W., Ko, R.K., Kwon, J.M.: Phys. C Supercond. 480, 111 (2012)

    Article  ADS  Google Scholar 

  25. Park, Y.J., Kim, E.K., Son, M.H., Min, S.-K.: J. Cryst. Growth 156, 487 (1995)

    Article  ADS  Google Scholar 

  26. Mariani, G., Fabbri, M., Negrini, F., Ribani, P.L.: Sep. Purif. Technol. 72, 147 (2010)

    Article  Google Scholar 

  27. Li, Y., Wang, J., Wang, X., Wang, B., Luan, Z.: Phys. C Supercond. 471, 91 (2011)

    Article  ADS  Google Scholar 

  28. Li, X., Ren, Z., Fautrelle, Y.: Mater. Lett. 63, 1235 (2009)

    Article  Google Scholar 

  29. Kazemikia, K., Bonabi, F., Asadpoorchallo, A., Shokrzadeh, M.: Rev. Sci. Instrum. 86, 025109 (2015)

    Article  ADS  Google Scholar 

  30. Gerber, R., Birss, R.R.: High gradient magnetic separation. Wiley (1983)

  31. Merino-Martos, A., de Vicente, J., Cruz-Pizarro, L., de Vicente, I.: J. Hazard. Mater. 186, 2068 (2011)

    Article  Google Scholar 

  32. Cheng, D.K.: Field and Wave Electromagnetics. Addison-Wesley, New York (1989)

    Google Scholar 

  33. Svoboda, J.: Magnetic techniques for the treatment of materials. Springer (2004)

  34. Kazemikia, K., Bonabi, F., Asadpoorchallo, A., Shokrzadeh, M.: Bull. Mater. Sci. 39, 457 (2016)

    Article  Google Scholar 

  35. Shaver, J., Parra-Vasquez, A.N.G., Hansel, S., Portugall, O., Mielke, C.H., von Ortenberg, M., Hauge, R.H., Pasquali, M., Kono, J.: ACS Nano 3, 131 (2008)

    Article  Google Scholar 

  36. Lu, J.P.: Phys. Rev. Lett. 74, 1123 (1995)

    Article  ADS  Google Scholar 

  37. Camponeschi, E., Vance, R., Al-Haik, M., Garmestani, H., Tannenbaum, R.: Carbon N. Y. 45, 2037 (2007)

    Article  Google Scholar 

  38. Nanni, F., Mayoral, B.L., Madau, F., Montesperelli, G., McNally, T.: Compos. Sci. Technol. 72, 1140 (2012)

    Article  Google Scholar 

  39. Yan, Y., Chan-Park, M.B., Zhang, Q.: Small 3, 24 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Laleh Kazemikia for her fruitful discussions and for editing the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaveh Kazemikia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kazemikia, K., Bonabi, F., Asadpoorchallo, A. et al. Effect of High-Gradient Magnetic Field on Electrical Property of Carbon Nanotube-Polypyrrole Composite; Nanotube Separation Mechanism. J Supercond Nov Magn 31, 327–336 (2018). https://doi.org/10.1007/s10948-017-4243-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-017-4243-x

Keywords

Navigation