Dwell Time Influence on Spark Plasma-Sintered MgB2
- 130 Downloads
- 1 Citations
Abstract
Samples of MgB2 with relative density above 95% were obtained by spark plasma sintering (SPS) at 1150 °C for a heating time of 100 °C/min and a maximum pressure of 95 MPa. Dwell time was of 1, 4, 7, 10, and 20 min. Samples show that dwell time has a low influence on superconducting characteristics. However, small differences were observed and they are discussed from the viewpoint of density, structural, microstructural, critical current density, irreversibility field, and pinning type. The dominant contribution for all investigated samples is given by point and δ T c pinning.
Keywords
MgB2 Dwell time Spark plasma sintering Critical current density PinningNotes
Acknowledgements
The authors gratefully acknowledge the financial support from Core Program PN16-480 P2, P3, and POC E-28, Romanian Ministry of Research and Innovation. The authors thank Dr. V. Mihalache and M. Burdusel for help and assistance with XRD measurements and sample preparation.
References
- 1.Larbalestier, D.C., Cooley, L.D., Rikel, M.O., Polyanskii, A.A., Jiang, J., Patnaik, S., Cai, X.Y., Feldmann, D.M., Gurevich, A., Squitieri, A.A., Naus, M.T., Eom, C.B., Hellstrom, E.E., Cava, R.J., Regan, K.A., Rogado, N., Hayward, M.A., He, T., Slusky, J.S., Khalifah, P., Inumaru, K., Haas, M.: Nature 410, 186–189 (2001)ADSCrossRefGoogle Scholar
- 2.Eisterer, M.: Supercond. Sci. Technol. 20, R47-R73 and references therein (2007)Google Scholar
- 3.Shim, S.H., Shim, K.B.: J. Am. Ceram. Soc. 88, 858–861 (2005)CrossRefGoogle Scholar
- 4.Aldica, G., Batalu, D., Popa, S., Ivan, I., Nita, P., Sakka, Y., Vasylkiv, O., Miu, L., Pasuk, I., Badica, P.: Physica C 477, 43–50 (2012)ADSCrossRefGoogle Scholar
- 5.Groza, J.R., Zavaliangos, A.: Mater Sci. Eng. A 287, 171–177 (2000)CrossRefGoogle Scholar
- 6.Badica, P., Crisan, A., Aldica, G., Endo, K., Borodianska, H., Togano, K., Awaji, S., Wtanabe, K., Sakka, Y., Vasylkiv, O.: Sci. Technol. Adv. Mater. 12, 013001 (2011)CrossRefGoogle Scholar
- 7.Aldica, G., Burdusel, M., Popa, S.S., Enculescu, M., Pasuk, I., Badica, P.: Physica C 515, 184–189 (2015)ADSCrossRefGoogle Scholar
- 8.Locci, A.M., Orru, R., Cao, G., Sanna, S., Congiu, F., Concas, G.: J. AICHE 52(7), 2618–2626 (2006)CrossRefGoogle Scholar
- 9.Guillard, F., Allemand, A., Lulewicz, J.D., Galy, J.: J. Eur. Ceram. Soc. 27(7), 2725–2728 (2007)CrossRefGoogle Scholar
- 10.Prikhna, T.A., Shapovalov, A.P., Grechnev, G.E., Boutko, V.G., Gusev, A.A., Kozyrev, A.V., Belogolovskiy, M.A., Moshchil V.E., Sverdun, V.B.: Low Temp. Phys. 42(5), 380–394 (2016)ADSCrossRefGoogle Scholar
- 11.Deuk Kyun Kang, D.K., Kim, D.W., Choi, S.H., Kim, C.J., Ahn, I.S.: Met. Mater. Int. 15(1), 15–19 (2009)CrossRefGoogle Scholar
- 12.Marks, G.W., Monson, L.A.: Ind. Eng. Chem. 47, 1611–1620 (1955)CrossRefGoogle Scholar
- 13.Lutterotti, L.: Nucl. Instrum. Meth. Phys. Res. B 268, 334–340 (2010)ADSCrossRefGoogle Scholar
- 14.Williamson, G.K., Hall, W.: Acta Metall. 1, 22–31 (1953)CrossRefGoogle Scholar
- 15.Bean, C.P.: Phys. Rev. Lett. 8, 250–253 (1962)ADSCrossRefGoogle Scholar
- 16.Gyorgy, E.M., Van Dover, R.B., Jackson, K.A., Schneemeyer, L.F., Waszczak, J.V.: Appl. Phys. Lett. 55, 283–285 (1989)ADSCrossRefGoogle Scholar
- 17.Miu, L., Aldica, G., Badica, P., Ivan, I., Miu, D., Jakob, G.: Supercond. Sci. Technol. 23, 095002 (2010)ADSCrossRefGoogle Scholar
- 18.Avdeev, M., Jorgensen, J.D., Ribeiro, R.A., Bud’ko, S.L., Canfield, P.C.: Physica C 387, 301–306 (2003)ADSCrossRefGoogle Scholar
- 19.Lee, S., Masui, T., Yamamoto, A., Uchiyama, H., Tajima, S.: Physica C 412–414, 31–35 (2004)CrossRefGoogle Scholar
- 20.Dou, S.X., Shcherbakova, O., Yoeh, W.K., Kim, J.H., Soltanian, S., Wang, X.L., Senatore, C., Flukiger, R., Dhalle, M., Husnjak, O., Babic, E.: Phys. Rev. Lett. 98, 097002 (2007)ADSCrossRefGoogle Scholar
- 21.Dew-Hughues, D.: Phil. Mag. 30, 293–305 (1974)ADSCrossRefGoogle Scholar
- 22.Sandu, V., Aldica, G., Popa, S., Enculescu, M., Badica, P.: Supercond. Sci. Technol. 29, 065012 (2016)ADSCrossRefGoogle Scholar
- 23.Sandu, V.: Mod. Phys. Lett. B 26, 1230007 (2012)ADSCrossRefGoogle Scholar
- 24.Martinez, E., Mikheenko, P., Martinez-Lopez, M., Millan, A., Bevan, A., Abell, J.S.: Phys. Rev. B 75, 134515 (2007)ADSCrossRefGoogle Scholar
- 25.Badica, P., Aldica, G., Ionescu, A.M., Burdusel, M., Batalu, D: Correlated functional oxides: composites and heterostructures. In: Nishikawa, H., Iwata, N., Endo, T., Takamura, Y., Lee, G.-H., Mele, P. (eds.) . ISBN: 978-3-319-43777-4. Springer, Berlin (2016)Google Scholar
- 26.Eisterer, M.: Phys. Rev. B 77, 144524 (2008)ADSCrossRefGoogle Scholar
- 27.Wang, J.L., Zeng, R., Kim, J.H., Lu, L., Dou, S.X.: Phys. Rev. B 77, 174501 (2008)ADSCrossRefGoogle Scholar
- 28.Yamamoto, K., Osamura, K., Balamurugan, S., Nakamura, T., Hoshino, T., Muta, I.: Supercond. Sci. Technol. 16, 1052 (2003)ADSCrossRefGoogle Scholar
- 29.Martínez, E., Mikheenko, P., Martínez-López, M., Millán, A., Bevan, A., Abell, J.S.: Phys. Rev. B 75, 134515 (2007)ADSCrossRefGoogle Scholar
- 30.Jung, S.G., Seong, W.K., Kang, W.N.: J. Appl. Phys. 111, 053906 (2012)ADSCrossRefGoogle Scholar
- 31.Hampshire, D.P., Jones, H.: J. Phys. C 21, 419 (1987)ADSCrossRefGoogle Scholar
- 32.Kramer, E.J.: J. Appl. Phys. 44, 1360–1370 (1973)ADSCrossRefGoogle Scholar
- 33.Blatter, G., Feigelman, M.V., Geshkenbein, V.B., Larkin, A.I., Vinokur, V.M.: Rev. Mod. Phys. 66, 1125 (1994)ADSCrossRefGoogle Scholar
- 34.Ma, Z.Q., Liu, Y.C.: Int. Mater. Rev. 56, 267–286 (2011)CrossRefGoogle Scholar
- 35.Qin, M.J., Wang, X.L., Liu, H.K., Dou, S.X.: Phys. Rev. B 65, 132508 (2002)ADSCrossRefGoogle Scholar
- 36.Hayashi, F.: Econometrics. Princeton University Press, Princeton. 2000, ISBN 0-691-01018-8, p. 20Google Scholar