Skip to main content
Log in

First-Principle Calculations of Structural, Elastic, and Electronic Properties of Intermetallic Rare Earth R2Ni2Pb (R = Ho, Lu, and Sm) Compounds

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

The structural, elastic, and electronic properties of rare earth intermetallic R2Ni2Pb (where R = Ho, Lu, and Sm) compounds were investigated with the density functional theory (DFT) calculations. The calculations are performed using the full potential-linearized augmented plane wave (FP-LAPW) method within the framework of local density approximation (LDA). The calculated values of the equilibrium lattice constants were in agreement with the available experimental values. The elastic constants (C i j ) were also calculated to understand the mechanical properties and structural stability of the compounds. Furthermore, the density of states and the charge density distributions of the compounds were calculated to understand the nature of the bonding in the material. The calculated results are in accordance with the available data in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Buschow, K.H.J.: Handbook of Magnetic Materials, vols. 1–13. Elsevier North Holland, Amsterdam (1980)

    Google Scholar 

  2. Gulay, L.D., Kalychak, Y.M., Wolcyrz, M.: Crystal structure of R2Ni2Pb (R = Y, Sm, Gd, Tb, Dy, Ho, Er, Tm, Lu) compounds. J. Alloys Compd. 311, 228-233 (2000)

    Article  Google Scholar 

  3. Gulay, L.D., Wolcyrz, M.: Crystal structure of Nd2Ni2Pb and Nd5NiPb3 compounds. Pol. J. Chem. 75, 1073-1075 (2001)

    Google Scholar 

  4. Gulay, L.D., Hiebl, K.: Physical properties of ternary compounds R2Ni2Pb (R = Y, Sm, Gd, Tb, Dy, Ho, Er and Tm). J. Alloys Compd. 351, 35-39 (2003)

    Article  Google Scholar 

  5. Daams, J.L.C., Villars, P., Vucht, J.H.V.: Atlas of Crystal Structure Types for Intermetallic Phases, vols. 1–4. ASM International, Ohio (1991)

    Google Scholar 

  6. Bezergheanu, A., Scutaru, G., Deac, L.G., Cizmaş, C.B.: Structural, magnetic and magnetocaloric properties of R2/3Ba1/3MnO3 (R = La, Pr) manganites. J. Optoelectron. Adv. Mater. 17, 1128-1133 (2015)

    Google Scholar 

  7. Chinchure, A.D., Munoz-Sandoval, E., Mydosh, J.A.: Metamagnetism and giant magnetoresistance of the rare-earth intermetallic compounds R2Ni2Pb (R = Er, Ho, Dy). Phys. Rev. B 66, 020409–020412 (2002)

    Article  ADS  Google Scholar 

  8. Hohenberg, P., Kohn, W.: Inhomogeneous electron gas. Phys. Rev. 136, B864–B871 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  9. Rashid, M., Abo, G.S., Ahmad, S.A., Imran, M., Saeed, M.A., Hussain, F., Noor, N.A.: First-principles study of electronic, elastic and optical properties of Zn1−x Mg x Te ternary alloys using modified Becke-Johnson potential. J. Optoelectron. Adv. Mater. 17, 741-749 (2015)

    Google Scholar 

  10. Schwarz, K., Blaha, P.: Lecture notes in chemistry 67, 139 (1996)

  11. Wei, S.H., Krakaner, H., Weinert, M.: Linearized augmented-plane-wave calculation of the electronic structure and total energy of tungsten. Phys. Rev. B32, 7792–7797 (1985)

    Article  ADS  Google Scholar 

  12. Blaha, P., Schwarz, K., Madsen, G.K.H., Kvasnicka, D., Luitz, J.: WIEN2K, An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties. Vienna University of Technology, Vienna (2001)

    Google Scholar 

  13. Wong, K.M., Irfan, M., Mahmood, A., Murtaza, G.: First principles study of the structural and optoelectronic properties of the A2InSbO6 (A = Ca, Sr, Ba) compounds. Optik 130, 517-524 (2017)

    Article  ADS  Google Scholar 

  14. Wong, K.M., Alay-e-Abbas, S.M., Fang, Y., Shaukat, A., Lei, Y.: Spatial distribution of neutral oxygen vacancies on ZnO nanowire surfaces: an investigation combining confocal microscopy and first principles calculations. J. Appl. Phys. 114, 034901–034909 (2013)

    Article  ADS  Google Scholar 

  15. Perdew, J.P., Wang, Y.: Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 45, 13244–13249 (1992)

    Article  ADS  Google Scholar 

  16. Muñoz-Sandoval, E., Díaz-Ortiz, A., Chinchure, A.D., Mydosh, J.A.: Unusual magnetic and transport properties in naturally layered intermetallic compounds R2Ni2Pb (R = Gd, Tb and Y). J. Alloys Compd. 369, 260-264 (2004)

    Article  Google Scholar 

  17. Monkhorst, H.J., Pack, J.D.: Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188-5192 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  18. Bokij, G.B.: Kristallokhimija. Nauka, Moskwa (1971)

    Google Scholar 

  19. Murnaghan, F.D.: The compressibility of media under extreme pressure. Proc. Natl. Acad. Sci. USA 30, 244–246 (1944)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Kalychak, Y.M., Zaremba, V.I., Baraniak, V.M., Zavalij, P. Yu., Bruskov, V.A., Sysa, L.V., Dmytrakh, O.V.: Crystal structure of R2Ni2In, R2Ni2−xIn and R2Cu2In (R-La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Lu, Y). Neorg. Mater. 26, 94–99 (1990)

    Google Scholar 

  21. Young, R.A., Sakthivel, A., Moss, T.S., Paria-Santos, C.O.: Program DBWS-9411 for Rietveld Analysis of the X-ray and Neutron Powder Diffraction Patterns. Georgia Inst. of Technology, Atlanta (1995)

    Google Scholar 

  22. Becher, H.J., Krogmann, K., Peisker, E.: Uber Das ternare Borid Mn2AlB2. Z. Anorg. Chem. 344, 140 (1966)

    Article  Google Scholar 

  23. Prokeš, K., Muñoz-Sandoval, E., Chinchure, A.D., Mydosh, J.A.: Magnetic structure and transitions of Dy2Ni2Pb. Phys. Rev. B 68, 134427–1-10 (2003)

    ADS  Google Scholar 

  24. Gulay, L.D., Wolcyrz, M.: Crystal structure of R6Co2 + x Pb1−y (R = Y, Gd, Tb, Dy, Ho, Er, Tm, Lu) and R6Ni2 + x Pb1−y (R = Tb, Dy, Ho, Er, Tm, Lu). J. Alloys Compd. 315, 164–168 (2001)

    Article  Google Scholar 

  25. Guloy, A.M., Corbett, J.D.: Exploration of the interstitial derivatives of La5Pb3 (Mn3Si3-type). J. Solid State Chem. 109, 352–358 (1994)

    Article  ADS  Google Scholar 

  26. Muñoz-Sandoval, E., Chinchure, A.D., Hendrikx, R.W.A., Mydosh, J.A.: Magnetic properties of a new intermetallic compound Ho2Ni2Pb. Europhys. Lett. 56, 302–308 (2001)

    Article  ADS  Google Scholar 

  27. Haas, P., Tran, F., Blaha, P.: Calculation of the lattice constant of solids with semilocal functional. Phys. Rev. B 79, 085104–1-10 (2009)

    ADS  Google Scholar 

  28. Jamal, M.: User’s guide. Ortho-elastic_13.2 (Release 27 Aug 2013) (2013)

  29. Mehl, M.J., Barry, B.M., Papaconstantopoulos, D.A.: Intermetallic Compounds: Principles and Practice, vol. 1, pp 195-210. Wiley, London (1995)

    Google Scholar 

  30. Ivanovskii, A.L.: New superconductors based on (Ca, Sr, Ba) Fe2As2 ternary arsenides: synthesis, properties, and simulation. J. Struct. Chem. 50, 539–551 (2009)

    Article  Google Scholar 

  31. Voigt, W.: Lehrbuch der Kristallphysik. Teubner, Leipzig (1929)

    MATH  Google Scholar 

  32. Reuss, A.: Berechnung der Fliehgrenze von Mischkristallen auf Grund der Plastizittitsbedingung fiir Einkristalle. Z. Angew. Math. Mech. 9, 49-58 (1929)

    Article  MATH  Google Scholar 

  33. Wang, B., Liu, Y., Ye, J.-W., Wang, J.: Electronic, magnetic and elastic properties of Mo2FeB2: first-principles calculations. Comput. Mater. Sci. 70, 133-139 (2013)

    Article  Google Scholar 

  34. Pugh, S.F.: Relation between the elastic moduli and the plastic properties of polycrystalline pure metals. Phil. Mag. 45, 833–843 (1954)

    Article  Google Scholar 

  35. Kada, M.O., Seddik, T., Sayede, A., Khenata, R., Bouhemadou, A., Deligoz, E., Alahmed, Z.A., Omran, S.B., Rached, D.: Elastic, electronic and thermodynamic properties of Rh3X (X = Zr, Nb and Ta) intermetallic compounds. Int. J. Mod. Phys. B 28, 1450006-1-17 (2014)

    Google Scholar 

  36. Anderson, O.L.: A simplified method for calculating the Debye temperature from elastic constants. J. Phys. Chem. Solids 24, 909-917 (1963)

    Article  ADS  Google Scholar 

  37. Hossain, M.A., Islam, A.K.M.A., Islam, F.N.: Elastic properties of alpha and beta phases of Li3N. J. Sci. Res. 1, 182-191 (2009)

    Google Scholar 

  38. Daoud, S.: Linear correlation between Debye temperature and lattice thermal conductivity in II-VI and III-V semiconductors. Int. J. Sci. World 3, 216-220 (2015)

    Article  Google Scholar 

  39. Pauling, L.: The Nature of the chemical bond IV. The energy of single bonds and the relative electronegativity of atoms. J. Am. Chem. Soc. 54, 3570-3582 (1932)

    Article  MATH  Google Scholar 

  40. Benabadji, M.K., Faraoun, H.I., Abdelkader, H.S., Dergal, M., Hlil, E.K., Merad, G.: Structural stability and electronic structure study of YCu2-YZn2 Laves phases by first-principles calculations. Comput. Mater. Sci. 77, 366-371 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

The authors (Khenata and Bin-Omran) extend their sincere appreciations to the Deanship of Scientific Research at the King Saud University for its funding of this Prolific Research Group (PRG-1437-39).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Al-Douri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benkaddour, Y., Abdelaoui, A., Yakoubi, A. et al. First-Principle Calculations of Structural, Elastic, and Electronic Properties of Intermetallic Rare Earth R2Ni2Pb (R = Ho, Lu, and Sm) Compounds. J Supercond Nov Magn 31, 395–403 (2018). https://doi.org/10.1007/s10948-017-4234-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-017-4234-y

Keywords

Navigation