Skip to main content
Log in

A Computational Study of Ferromagnetic Exchange Interactions and Charge Transfer in Codoped Gallium Nitride

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

This study reports a systematic density functional theory-based analysis on electronic properties of individual doping and codoping of Ti and Ce into GaN. In the case of codoped GaN, the placement of Ti and Ce at nearest neighbour sites appeared as the most stable configuration. The unoccupied states in the case of individual doped material are observed to become occupied after codoping, and a metal-to-metal charge transfer of the Ti-N-Ce character is observed in the material. The interaction between dopants suggests 4f-5d-CB hybridization that opens the way to the exploitation of novel luminescence phenomena. A model showing charge transfer and interaction between the dopants is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Morkoc, H.: Handbook of Nitride Semiconductors and Devices. Weinheim-Verlag (2008)

  2. Henini, M. (ed.): Dilute Nitride Semiconductors. Elsevier, Oxford (2005)

  3. MacDonald, A.H., Schiffer, P., Samarth, N.: Ferromagnetic semiconductors: moving beyond (Ga,Mn)As. Nat. Mater. 4, 195–202 (2005)

    Article  ADS  Google Scholar 

  4. Dietl, T., Ohno, H., Matsukura, F., Cibert, J., Ferrand, D.: Zener model description of ferromagnetism in zinc–blende magnetic semiconductors. Science 287, 1019–1022 (2000)

    Article  ADS  Google Scholar 

  5. Mishra, K.C., Eyert, V., Schmidt, P.C.: A first-principles investigation of the electronic structure of trivalent rare earth ions in gallium nitride. Z. Phys. Chem. 221, 1663–1676 (2007)

    Article  Google Scholar 

  6. Chen, G., Zhang, Y., Wang, D., Zhang, J., Xu, K.: Structural, electronic and magnetic properties of GaN nanotubes filled with nickel nanowires. Comput. Theor. Chem. 963, 18–23 (2011)

    Article  Google Scholar 

  7. Mezdrogina, M.M., Danilovskii, E. Yu., Kuzmin, R.V.: Emission from rare earth ions in GaN wurtzite crystals. Inorg. Mater. 47, 1450–1469 (2011)

    Article  Google Scholar 

  8. Subramanian, M., Thakur, P., Gautam, S., Chae, K.H., Tanemura, M., Hihara, T., Vijayalakshmi, S., Soga, T, Kim, S.S., Asokan, K., Jayavel, R.: Investigations on the structural, optical and electronic properties of Nd doped ZnO Thin Films. J. Phys. D 42, 105410 (2009)

    Article  ADS  Google Scholar 

  9. Davies, R.P., Abernathy, C.R., Pearton, S.J., Norton, D.P., Ren, F.: Recent advances in transition and lanthanide metal–doped GaN. Chem. Eng. Commun. 196, 1030–1053 (2009)

    Article  Google Scholar 

  10. Buschow, K.H.J.: Intermetallic compounds of rare–earth and 3d transition metals. Rep. Prog. Phys. 40, 1179–1256 (1977)

    Article  ADS  Google Scholar 

  11. Xu, B., Pan, B.C.: Effects of nitrogen vacancies on transition-metal-doped GaN: an ab initio study. J. Appl. Phys. 105, 103710 (2009)

    Article  ADS  Google Scholar 

  12. Zhang, J., Li, X.Z., Xu, B., Sellmyer, D.J.: The influence of nitrogen growth pressure on the ferromagnetic properties of Cr-doped AlN thin films. Appl. Phys. Lett. 86, 212504–212506 (2005)

    Article  ADS  Google Scholar 

  13. Yao, G., Fan, G., Xing, H., Zheng, S., Maa, J., Li, S., Zhang, Y., He, M.: First-principles study of magnetic properties in V-doped GaN. Chem. Phys. Lett. 529, 35–38 (2012)

    Article  ADS  Google Scholar 

  14. Xiong, Z., Shi, S., Jiang, F.: Ti in GaN: ordering ferromagnetically from first-principles study. Chem. Phys. Lett. 443, 92–94 (2007)

    Article  ADS  Google Scholar 

  15. Majid, A., Azmat, M., Rana, U.A., Khan, S.U., Alzahrani, E., Javed, M., Rana, U.A., Khan, S.: A computational study of magnetic exchange interactions of 3d and 4f electrons in Ti-Ce co-doped AlN. Mater. Chem. Phys. 179, 316–321 (2016)

    Article  Google Scholar 

  16. Anandan, S., Miyauchi, M.: Ce-doped ZnO (Ce x Zn1−x O) becomes an efficient visible-light-sensitive photocatalyst by co-catalyst (Cu2+) grafting. Phys. Chem. Chem. Phys. 13, 14937–14945 (2011)

    Article  Google Scholar 

  17. Vij, A., Singh, S., Kumar, R., Lochab, S.P., Kumar, V.V.S., Singh, N.: Thermoluminescence study of UV irradiated Ce doped SrS nanostructures. J. Phys. D 42, 105103 (2009)

    Article  ADS  Google Scholar 

  18. Yao, B., Wang, P., Wang, S., Zhang, M.: Ce doping influence on the magnetic phase transition in In2S3:Ce nanoparticles. Cryst. Eng. Comm. 16, 2584–2588 (2014)

    Article  Google Scholar 

  19. Majid, A., Dar, A.: A density functional theory study of 3d-4f exchange interactions in Cr-Nd codoped GaN. J. Magn. Magn. Mater. 368, 384–392 (2014)

    Article  ADS  Google Scholar 

  20. Teraguchi, N., Suzuki, A., Nanishi, Y., Zhou, Y.-K., Hashimoto, M., Asahi, H.: Room-temperature observation of ferromagnetism in diluted magnetic semiconductor GaGdN grown by RF-molecular beam epitaxy. Solid State Commun. 122, 651–653 (2002)

    Article  ADS  Google Scholar 

  21. Xu, Q., Schmidt, H., Hochmuth, H., Lorenz, M., Setzer, A., Esquinazi, P., Meinecke, C., Grundmann, M.: Room temperature ferromagnetism in Nd- and Mn-Codoped ZnO. J. Phys. D: Appl. Phys. 41, 105012 (2008)

    Article  ADS  Google Scholar 

  22. Assadi, M.H.N., Zhang, Y. B., Photongkam, P., Li, S.: Intrinsic ambient ferromagnetism in ZnO:Co induced by Eu codoping. J. Appl. Phys. 109, 013909 (2011)

    Article  ADS  Google Scholar 

  23. Basha, M., Ramasubramanian, S., Rajagopalan, M., Kumar, J.: Investigations of cobalt and carbon codoping in gallium nitride for spintronic applications. J. Magn. Magn. Mater. 324, 1528–1533 (2012)

    Article  ADS  Google Scholar 

  24. Tang, Z., Zeng, J., Xiong, Y., Tang, M., Xu, D., Cheng, C., Xiao, Y., Zhou, Y.: Resistive switching properties of Ce and Mn co-doped BiFeO3 thin films for nonvolatile memory application. AIP Adv. 3, 122117 (2013)

    Article  ADS  Google Scholar 

  25. Liu, G., Hou, B., Zhang, R.: Electronic and magnetic properties of (Mn, C)-codoped GaN. Mod. Phys. Lett. B 28, 1450017–1450025 (2014)

    Article  ADS  Google Scholar 

  26. Velde, G.T., Bickelhaupt, F.M., Baerends, E.J., Fonseca Guerra, C., van Gisbergen, S.J.A., Snijders, J.G., Ziegler, T.: Chemistry with ADF. J. Comput. Chem. 22, 931–967 (2001)

    Article  Google Scholar 

  27. Yan, Q., Janotti, A., Scheffler, M., Van de Walle, C.G.: Role of nitrogen vacancies in the luminescence of Mg-doped GaN. Appl. Phys. Lett. 100, 142110 (2012)

    Article  ADS  Google Scholar 

  28. Gopal, P., Spaldin, N.A.: Magnetic interactions in transition-metal-doped ZnO: an ab initio study. Phys. Rev. B 74, 94418 (2006)

    Article  ADS  Google Scholar 

  29. Perdew, J.P., Burke, K., Wang, Y.: Generalized gradient approximation for the exchange-correlation hole of a many-electron system. Phys. Rev. B 54, 16533 (1996)

    Article  ADS  Google Scholar 

  30. Cococcioni, V.M., Gironcoli, S.D.: Linear response approach to the calculation of the effective interaction parameters in the LDA + U method. Phys. Rev. B 71, 035105 (2005)

    Article  ADS  Google Scholar 

  31. Anisimov, V.I., Zaanen, J., Andersen, O.K.: Band theory and Mott insulators: Hubbard U instead of Stoner I. Phys. Rev. B 44, 943 (1991)

    Article  ADS  Google Scholar 

  32. Majid, A., Fatima, S., Dar, A.: A density functional theory study of electronic properties of Ce:GaN. Comput. Mater. Sci. 79, 929–932 (2013)

    Article  Google Scholar 

  33. Min, Z., Jun-Jie, S.: Electronic structure and magnetic properties of substitutional transition-metal atoms in GaN nanotubes. Chin. Phys. B 23, 017301 (2014)

    Article  ADS  Google Scholar 

  34. Zhang, Z., Wu, S., Kuang, M.: Theoretical investigations of the Jahn–Teller distortions for V3+ and Cr4+ in α-Al2O3. Comput. Theor. Chem. 965, 47–52 (2011)

    Article  Google Scholar 

  35. Dar, A., Majid, A.: DFT study of cerium doped aluminum nitride. Eur. Phys. J. Appl. Phys. 71, 10101 (2015)

    Article  ADS  Google Scholar 

  36. Russell, N., Saunders, F.A.: New regularities in the spectra of the alkaline earths. J. Astro 61, 38–69 (1925)

    Article  ADS  Google Scholar 

  37. Kou, X.C., Grossinge, R., Wiesinger, G., Liu, J.P., De Boer, F.R., Kleinschroth, Kronmuller, H.: Intrinsic magnetic properties of RFe10Mo2 compounds (R = Y, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Or Tm). Phys. Rev. B 51, 8254 (1995)

    Article  ADS  Google Scholar 

  38. Richter, M.: Band structure theory of magnetism in 3d-4f Compounds. J. Phys. D 31, 1017 (1998)

    Article  ADS  Google Scholar 

  39. Budzák, Š., Mach, P., Juhász, G., Medved, M., Kysel, O.: Theoretical study of charge transfer complexes between antithyroid thioamides and TCNE: thermodynamics of the complex formation. Comput. Theor. Chem. 1051, 129–136 (2015)

    Article  Google Scholar 

  40. Zeng, J., Tang, Z.H., Tang, M.H., Xu, D.L., Xiao, Y.G., Zeng, B.W., Li, L. Q., Zhou, Y.C.: Enhanced ferroelectric, dielectric and leakage properties in Ce and Ti co-doping BiFeO3 thin films. J. Sol-Gel Sci. Technol. 72, 587–592 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdul Majid.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Majid, A., Ahmad, N., Awan, T.I. et al. A Computational Study of Ferromagnetic Exchange Interactions and Charge Transfer in Codoped Gallium Nitride. J Supercond Nov Magn 31, 475–481 (2018). https://doi.org/10.1007/s10948-017-4230-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-017-4230-2

Keywords

Navigation