Skip to main content
Log in

Elastic and Magnetic Properties of Cubic Fe4C from First-Principles

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

First-principles calculations, based on density functional theory (DFT), are used to study the phase stability, elastic, magnetic, and electronic properties of cubic (c)-Fe4C. Our results show that c-Fe4C has ferromagnetic (FM) ground state as compared with antiferromagnetic (AFM) and nonmagnetic (NM) states. To study the phase stability of c-Fe4C, BCC Fe4C, FCC Fe4C, and BCC Fe16C, where C is considered at tetrahedral and octahedral interstitial sites, are also considered. The formation energy of c-Fe4C is smaller than BCC Fe4C but the shear moduli of c-Fe4C is negative in both the FM and AFM states indicating that c-Fe4C is dynamically not stable in the magnetic (FM/AFM) state. NM state has positive shear moduli which illustrates that the instability in c-Fe4C is due to magnetism and can lead to soft phonon modes. The calculated formation energy also shows that c-Fe4C has higher formation energy than the FCC Fe4C indicating no possibility of c-Fe4C in low carbon steels at low temperature. The magnetic moment of Fe in c-Fe4C is also sensitive to lattice deformation and the electronic structure reveals the itinerant nature of electrons responsible for metallic behavior of c-Fe4C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bhadeshia, H.K.D.H., Honeycombe, S.R.: Steels Microstructure and Properties, 3rd edition

  2. Song, E.J., Bhadeshia, H.K.D.H., Suh, D.W.: Corros. Sci. 77, 379 (2013)

    Article  Google Scholar 

  3. Baik, S.S., Min, B.I., Kwon, S.K., Koo, Y.M.: Phys. Rev. B 81, 144101 (2010)

    Article  ADS  Google Scholar 

  4. Hofer, L.J., Cohen, E.M.: Nature 167, 977 (1951)

    Article  ADS  Google Scholar 

  5. Jack, D.H., Jack, K.H.: Mater. Sci. Engin. 11, 1 (1973)

    Article  Google Scholar 

  6. Goldschmidt, H.J.: J. Iron Steel Inst. 160A, 345 (1948)

    Google Scholar 

  7. Nagakura, S., Oketani, S.: Transactions ISIJ 8, 265 (1968)

    Google Scholar 

  8. Taneike, M., Abe, F., Sawada, K.: Nature 424, 294 (2003)

    Article  ADS  Google Scholar 

  9. Entin, I.R., Somenkov, V.A., Shil’shtein, S.Sh.: Sov. Phys. Dokl. 17, 1021 (1973)

    ADS  Google Scholar 

  10. Kaplow, R., Ron, M., Decristofaro, N.: Metall. Trans. A 14A, 1135 (1983)

    Article  ADS  Google Scholar 

  11. Zener, C.: Trans. AIME 167, 550 (1946)

    Google Scholar 

  12. Izotov, V.I., Utevskiy, L.M.: Phys. Met. Metallogr. 25, 86 (1968)

    Google Scholar 

  13. Choo, W.K., Kaplow, R.: Acta Metall. 21, 725 (1973)

    Article  Google Scholar 

  14. Ino, H., Ito, T., Nasu, S., Gonser, U.: Acta Metall. 30, 9 (1982)

    Article  Google Scholar 

  15. Nagakura, S., Toyoshima, M.: Trans. JIM 20, 100 (1979)

    Article  Google Scholar 

  16. Mounet, N., Marzari, N.: Phys. Rev. B 71, 205214 (2005)

    Article  ADS  Google Scholar 

  17. Physics of Group IV and III-V Compounds, edited by O. Madelung Springer-Verlag, Berlin, 1982d, Vol. 17a of Landolt- Bornstein, New Series, Group III, p. 107

  18. Ordejon, P., Artacho, E., Soler, J.M.: Phys. Rev. B 53, 10441 (1996)

    Article  ADS  Google Scholar 

  19. Kohn, W., Sham, L.J.: Phys. Rev. Vol. 140 (1965)

  20. Perdew, J.P., Burke, K., Ernzerhof, M.: Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  21. Troullier, N., Martins, J.: Phys. Rev. B 43, 1993 (1991)

    Article  ADS  Google Scholar 

  22. Rahman, G., Kim, I.G., Bhadeshia, H.K.D.H.: J. Appl. Phys. 111, 063503 (2012)

    Article  ADS  Google Scholar 

  23. Birch, F.: Phys. Rev. 71, 809 (1947)

    Article  ADS  Google Scholar 

  24. Murnaghan, F.D.: Proc. Natl. Acad. Sci. USA 30, 244 (1944)

    Article  ADS  Google Scholar 

  25. Kittel, C.: Introduction to Solid State Physics, 7th edn. Wiley, New York (1995)

    MATH  Google Scholar 

  26. Fange, C.M., et al.: Phys. Rev. B 85, 054116 (2012)

    Article  ADS  Google Scholar 

  27. dos Santos, A.V., da Costa, M.I., Kuhnen, C.A.: J. Magn. Magn. Mat. 166, 223 (1997)

    Article  ADS  Google Scholar 

  28. Peltzer, E.L., Blanca, J., Desimoni N.E.: Christensen Physica B Cond. Matt. 354, 341 (2004)

    Article  ADS  Google Scholar 

  29. Jiang, D.E., Carter, E.A.: Phys. Rev. B 67, 214103 (2003)

    Article  ADS  Google Scholar 

  30. Medvedeva, N.I., Van Aken, D., Medvedeva, J.E.: J. Phys.: Condens. Matter 22, 316002 (2010)

  31. Jang, J.H., et al.: Scr. Mater. 68, 195–198 (2013)

    Article  ADS  Google Scholar 

  32. Kirilyukm, A., et al.: Phys. Rev. B 54, 2 (1996)

    Google Scholar 

  33. Gorbatov, O.I., et al.: Phys. Met. Metallogr. 114, 8 (2013)

    Article  Google Scholar 

  34. Mryasov, O.N., Liechtenstein, A.I., Sandratskii, L.M., Gubanov, V.A.: J. Phys.: Condens. Matter 3, 7683 (1991)

    ADS  Google Scholar 

Download references

Acknowledgement

Gul Rahman acknowledges the cluster facilities of NCP, Pakistan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gul Rahman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahman, G., Jan, H.U. Elastic and Magnetic Properties of Cubic Fe4C from First-Principles. J Supercond Nov Magn 31, 405–411 (2018). https://doi.org/10.1007/s10948-017-4224-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-017-4224-0

Keywords

Navigation