Skip to main content
Log in

Ising-Type Single-Segment Ferromagnetic Nanowire with Core/Shell: the Dependences of the Angle, Temperature, and Geometry

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

The hysteresis properties of a nanostructure are affected by many factors, such as the material of the nanostructure, the shape and size of the nanostructure, the orientation of the magnetizing field. In the present study, the influence of angle, temperature, and geometry on an Ising-type single-segment ferromagnetic nanowire with core/shell are studied by the effective-field theory with correlations. The behavior of the coercivity is presented by means of phase diagrams in the seven different planes and detected the magnetic characteristics of the nanowire. We find that the magnetic hardness decreases as the angle and temperature increase. We also observe that hysteresis behaviors of ferromagnetic nanowire have strong dependence on interlayer length, shell length, and wire length.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Leite, V.S., Figueiredo, W.: Spin-glass surface disorder on the magnetic behaviour of antiferromagnetic small particles. Physica A 350, 379–392 (2005)

    Article  ADS  Google Scholar 

  2. Kaneyoshi, T.: Ferrimagnetic magnetizations of transverse Ising thin films with diluted surfaces. J. Magn. Magn. Mater. 321, 3630–3636 (2009)

    Article  ADS  Google Scholar 

  3. Saber, M., Lukyanchuk, I., Madani, M., Tabyaoui, A., Ainane, A.: The dielectric properties of the KH2PO4/KD2h2PO4 superlattice. Chinese J. Phys. 45, 58–74 (2007)

    ADS  Google Scholar 

  4. Apostolova, I., Wesselinowa, J.M.: Magnetic control of ferroelectric properties in multiferroic BiFeO3 nanoparticles. Solid State Commun. 147, 94–97 (2008)

    Article  ADS  Google Scholar 

  5. Lipinska, A., Simserides, C., Trohidou, K.N., Goryca, M., Kossacki, P., Majhofer, A., Dietl, T.: Ferromagnetic properties of p-(Cd,Mn)Te quantum wells: interpretation of magneto-optical measurements by Monte Carlo simulations. Phys. Rev. B., 79 (2009)

  6. Kantar, E., Keskin, M.: Thermal and magnetic properties of ternary mixed Ising nanoparticles with core-shell structure: effective-field theory approach. J. Magn. Magn. Mater. 349, 165–172 (2014)

    Article  ADS  Google Scholar 

  7. Chen, M., Searson, P.C., Chien, C.L.: Micromagnetic behavior of electrodeposited Ni/Cu multilayer nanowires. J. Appl. Phys. 93, 8253–8255 (2003)

    Article  ADS  Google Scholar 

  8. Clime, L., Zhao, S.Y., Chen, P., Normandin, F., Roberge, H., Veres, T.: The interaction field in arrays of ferromagnetic barcode nanowires. Nanotechnology, 18 (2007)

  9. Piraux, L., George, J.M., Despres, J.F., Leroy, C., Ferain, E., Legras, R., Ounadjela, K., Fert, A.: Giant magnetoresistance in magnetic multilayered nanowires. Appl. Phys. Lett. 65, 2484–2486 (1994)

    Article  ADS  Google Scholar 

  10. Sharif, R., Zhang, X.Q., Rahman, M. K., Shamaila, S., Chen, J.Y., Han, X.F., Kim, Y.K.: Fabrication and magnetization reversal processes for Co/Cu multilayer nanowires. IEEE T. Magn. 45, 4033–4036 (2009)

    Article  ADS  Google Scholar 

  11. Cho, J.U., Min, J.H., Ko, S.P., Soh, J.Y., Kim, Y.K., Wu, J.H., Choi, S.H.: Effect of external magnetic field on anisotropy of Co/Cu multilayer nanowires. J. Appl. Phys., 99 (2006)

  12. Tang, X.T., Wang, G.C., Shima, M.: Superparamagnetic behavior in ultrathin CoNi layers of electrodeposited CoNi/Cu multilayer nanowires. J. Appl. Phys., 99 (2006)

  13. Kantar, E.: Hexagonal-type Ising nanowire with core/shell structure designed with half-integer spins: compensation behaviors and phase diagrams in the temperature and interaction planes. J. Supercond. Novel Magn. 28(9), 2865–2873 (2015)

    Article  Google Scholar 

  14. Aknc, Ü.: Effects of the randomly distributed magnetic field on the phase diagrams of Ising nanowire. I. Discrete distributions. J. Magn. Magn. Mater. 324(22), 3951–3960 (2012)

    Article  ADS  Google Scholar 

  15. Boughrara, M., Kerouad, M., Zaim, A.: J. Magn. Magn. Mater. 360, 222 (2014)

    Article  ADS  Google Scholar 

  16. Kantar, E., Kocakaplan, Y.: Hexagonal type Ising nanowire with mixed spins: some dynamic behaviors. J. Supercond. Novel Magn. 393, 574–583 (2015)

    Google Scholar 

  17. Kantar, E., Ertas, M.: Influence of frequency on the kinetic spin-3/2 cylindrical Ising nanowire system in an oscillating field. J. Supercond. Nov. Magn. 28, 2529–2538 (2015)

    Article  Google Scholar 

  18. Kantar, E., Ertas, M.: Cylindrical Ising nanowire in an oscillating magnetic field and dynamic compensation temperature. Superlattice Microst. 75, 831–842 (2014)

    Article  ADS  Google Scholar 

  19. Ertas, M., Kantar, E.: Cylindrical Ising nanowire with crystal field: existence of a dynamic compensation temperatures. Phase Transit. 88, 567–581 (2015)

    Article  Google Scholar 

  20. Feraoun, A., Zaim, A., Kerouad, M.: Physica B 445, 74 (2014)

    Article  ADS  Google Scholar 

  21. Fonseca, F.C., Goya, G.F., Jardim, R.F., Muccillo, R., Carreño, N.L.V., Longo, E., Leite, E.R.: Phys. Rev. B 66, 104406 (2002)

    Article  ADS  Google Scholar 

  22. Gilles, C., Bonville, P., Rakoto, H., Broto, J.M., Wong, K.K.W., Mann, S.: J. Magn. Magn. Mater. 241, 430 (2002)

    Article  ADS  Google Scholar 

  23. Crespo, P., Litran, R., Rojas, T.C., Multigner, M., de la Fuente, J.M., Sanchez Lopez, J.C., Garca, M.A., Hernando, A., Penades, S., Fernandez, A.: Phys. Rev. Lett. 93, 087204 (2002)

  24. Du, H.F., Du, A.: J. Appl. Phys. 99, 104306 (2006)

    Article  ADS  Google Scholar 

  25. Iglesias, O., Labarta, A.: Physica B 372, 247 (2006)

    Article  ADS  Google Scholar 

  26. De Biasi, E., Ramos, C.A., Zysler, R.D., Fiorani, D.: Physica B 372, 245 (2006)

    Article  Google Scholar 

  27. Zaim, A., Kerouad, M., El Amraoui, Y.: J. Magn. Magn. Mater. 321, 1077 (2009)

    Article  ADS  Google Scholar 

  28. Han, G.C., Zong, B.Y., Luo, P., Wu, Y.H.: Angular dependence of the coercivity and remanence of ferromagnetic nanowire arrays. J. Appl. Phys. 93(11), 9202–9207 (2003)

    Article  ADS  Google Scholar 

  29. Escrig, J., Daub, M., Landeros, P., Nielsch, K., Altbir, D.: Angular dependence of coercivity in magnetic nanotubes. Nanotechnology 18(44), 445706 (2007)

    Article  ADS  Google Scholar 

  30. Lavin, R., Denardin, J.C., Escrig, J., Altbir, D., Cortés, A., Gómez, H.: Angular dependence of magnetic properties in Ni nanowire arrays. J. Appl. Phys. 106(10), 103903 (2009)

    Article  ADS  Google Scholar 

  31. Lavin, R., Gallardo, C., Palma, J.L., Escrig, J., Denardin, J.C.: Angular dependence of the coercivity and remanence of ordered arrays of Co nanowires. J. Magn. Magn. Mater. 324(15), 2360–2362 (2012)

    Article  ADS  Google Scholar 

  32. Kulkarni, P.D., Sellarajan, B., Krishnan, M., Barshilia, H.C., Chowdhury, P.: Anisotropic magnetic properties of bi-layered structure of ordered Co nanowire array: micromagnetic simulations and experiments. J. Appl. Phys., 114 (2013)

  33. Proenca, M.P., Sousa, C.T., Escrig, J., Ventura, J., Vazquez, M., Araujo, J.P.: Magnetic interactions and reversal mechanisms in Co nanowire and nanotube arrays. J. Appl. Phys., 113 (2013)

  34. Bran, C., Espejo, A.P., Palmero, E.M., Escrig, J., Vazquez, M.: Angular dependence of coercivity with temperature in Co-based nanowires. J. Magn. Magn. Mater. 396, 327–332 (2015)

    Article  ADS  Google Scholar 

  35. Viqueira, M.S., Bajales, N., Urreta, S.E., Bercoff, P.G.: Magnetization mechanisms in ordered arrays of polycrystalline Fe100−xCox nanowires. J. Appl. Phys., 117 (2015)

  36. Samanifar, S., Kashi, M.A., Ramazani, A., Alikhani, M.: Reversal modes in FeCoNi nanowire arrays: correlation between magnetostatic interactions and nanowires length. J. Magn. Magn. Mater. 378, 73–83 (2015)

    Article  ADS  Google Scholar 

  37. Palmero, E.M., Bran, C., del Real, R.P., Vazquez, M.: Vortex domain wall propagation in periodically modulated diameter FeCoCu nanowire as determined by the magneto-optical Kerr effect. Nanotechnology, 26 (2015)

  38. Honmura, R., Kaneyoshi, T.: J. Phys. C: Solid State Phys. 12, 3979 (1979)

    Article  ADS  Google Scholar 

  39. Kaneyoshi, T., Fittipaldi, I.P., Honmura, R., Manabe, T.: New correlated-effective-field theory in the Ising-model. Phys. Rev. B 24, 481–484 (1981)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ersin Kantar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kantar, E. Ising-Type Single-Segment Ferromagnetic Nanowire with Core/Shell: the Dependences of the Angle, Temperature, and Geometry. J Supercond Nov Magn 31, 341–346 (2018). https://doi.org/10.1007/s10948-017-4221-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-017-4221-3

Keywords

Navigation