Skip to main content
Log in

Low-Temperature Short-Time SPS Processes to Produce Fine-Grained High-Coercivity Barium Hexaferrite Ceramics from Polyol Nanoparticles

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Barium hexaferrite (BaFe12O19) ceramics were obtained by combination of polyol-synthesized precursors subsequently consolidated by spark plasma sintering (SPS) at a low temperature (800 C). X-ray powder diffraction studies showed the influence of the experimental parameters to produce a virtually single- or multiphase material. The room temperature magnetic properties exhibited interesting variety of properties, including exchange coupling (spring magnet) between hexaferrite and other magnetic phases. The saturation magnetization and coercive field, at room temperature, are in the 34–70 emu/g and 4.1–5.0 kOe ranges, respectively. The combination of strong coercive field and magnetization resulted in a maximum energy product [(BH)max] = 10.9 kJ/m3 for the sample with the highest BaFe12O19 content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Pullar, R.C.: Hexagonal ferrites: a review of the synthesis, properties and applications of hexaferrite ceramics. Prog. Mater. Sci. 57(7), 1191–1334 (2012). doi:10.1016/j.pmatsci.2012.04.001

    Article  Google Scholar 

  2. Haq, A., Anis-ur-Rehman, M.: Effect of Pb on structural and magnetic properties of Ba-hexaferrite. Physica B 407, 822–826 (2012). doi:10.1016/j.physb.2011.11.038

    Article  ADS  Google Scholar 

  3. Ghzaiel, T.B., Dhaoui, W., Pasko, A., Mazaleyrat, F.: Effect of non-magnetic and magnetic trivalent ion substitutions on BaM-ferrite properties synthesized by hydrothermal method. J. Alloys Compd. 671, 245–253 (2016). doi:10.1016/j.jallcom.2016.02.071

    Article  Google Scholar 

  4. González-Carreño, T., Morales, M.P., Serna, C.J.: Barium ferrite nanoparticles prepared directly by aerosol pyrolysis. Mater. Lett. 43(3), 97–101 (2000). doi:10.1016/S0167-577X(99)00238-4

    Article  Google Scholar 

  5. Xu, P., Han, X., Wang, M.: Synthesis and magnetic properties of BaFe12O19 hexaferrite nanoparticles by a reverse microemulsion technique. J. Phys. Chem. C 111(16), 5866–5870 (2007)

    Article  Google Scholar 

  6. Drofenik, M., Ban, I., Makovec, D., žnidaršič, A., Jagličić, Z., Hanžel, D., Lisjak, D.: The hydrothermal synthesis of super-paramagnetic barium hexaferrite particles. Mater. Chem. Phys. 127, 415–419 (2011). doi:10.1016/j.matchemphys.2011.02.037

    Article  Google Scholar 

  7. Orrù, R., Licheri, R., Locci, A.M., Cincotti, A., Cao, G.: Consolidation/synthesis of materials by electric current activated/ assisted sintering. Mater. Sci. Eng., R 63(4), 127–287 (2009). doi:10.1016/j.mser.2008.09.003

    Article  Google Scholar 

  8. Kneller, E.F., Hawig, R.: The exchange-spring magnet: a new principle for permanent magnets. IEEE Trans. Mag. 27(4), 3588–3600 (1991). doi:10.1109/20.102931

    Article  ADS  Google Scholar 

  9. Beji, Z., Smiri, L.S., Yaacoub, N., Greneche, J.M., Menguy, N., Ammar, S., Fievet, F.: Annealing effect on the magnetic properties of polyol-made Ni-Zn ferrite nanoparticles. Chem. Mater. 22(4), 1350–1366 (2010). doi:10.1021/cm901969c

    Article  Google Scholar 

  10. Gaudisson, T., Acevedo, U., Nowak, S., Yaacoub, N., Greneche, J.M., Ammar, S., Valenzuela, R.: Combining soft chemistry and spark plasma sintering to produce highly dense and finely grained soft ferrimagnetic Y3Fe5O12 (YIG) ceramics. J. Am. Ceram. Soc. 96(10), 3094–3099 (2013). doi:10.1111/jace.12452

    Google Scholar 

  11. Stingaciu, M., et al.: Magnetic properties of ball-milled SrFe12O19 particles consolidated by Spark-Plasma Sintering. Sci. Rep. 5, 14112 (2015). doi:10.1038/srep14112

    Article  ADS  Google Scholar 

  12. Valenzuela, R., Gaudisson, T., Ammar, S.: Severe reduction of Ni-Zn ferrites during consolidation by spark plasma sintering (SPS). J. Magn. Magn. Mater. 400, 311–314 (2016). doi:10.1016/j.jmmm.2015.07.044

    Article  ADS  Google Scholar 

  13. Shepherd, P., Mallick, K.K., Green, R.J.: Magnetic and structural properties of M-type barium hexaferrite prepared by co-precipitation. J. Magn. Magn. Mater. 311(2), 683–692 (2007). doi:10.1016/j.jmmm.2006.08.046

    Article  ADS  Google Scholar 

  14. Franceschin, G., Flores-Martínez, N., Vázquez-Victorio, G., Ammar, S., Valenzuela, R.: Sintering and reactive sintering by spark plasma sintering (SPS). In: Shishkovsky, I.V. (ed.) Sintering. Intechopen (In Press)

  15. Acevedo, U., Gaudisson, T., Ortega-Zempoalteca, R., Nowak, S., Ammar, S., Valenzuela, R.: Magnetic properties of ferrite-titanate nanostructured composites synthesized by the polyol method and consolidated by spark plasma sintering. J. Appl. Phys. 113, 17B519 (2013). doi:10.1063/1.4798604

    Article  Google Scholar 

  16. Valenzuela, R.: Magnetic Ceramics, p. 129. Cambridge University Press, Cambridge (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Vázquez-Victorio.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vázquez-Victorio, G., Flores-Martínez, N., Franceschin, G. et al. Low-Temperature Short-Time SPS Processes to Produce Fine-Grained High-Coercivity Barium Hexaferrite Ceramics from Polyol Nanoparticles. J Supercond Nov Magn 31, 347–351 (2018). https://doi.org/10.1007/s10948-017-4219-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-017-4219-x

Keywords

Navigation