Skip to main content
Log in

Effect of Sodium Doping on Magnetic and Magnetocaloric Properties of La0.65Sr0.35MnO3 Manganites

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

A series of Na-doped manganites La0.65Sr0.35−x Na x MnO3 (x = 0.20, 0.25, 0.30, and 0.35) were synthesized via sol-gel method. The structural, magnetic, and magnetocaloric properties of the samples were investigated by XRD, TEM, Raman spectroscopy, and magnetization measurement. Rietveld refinements of XRD patterns shown that samples were single phase with a space group R-3c. The variation of magnetization versus temperature in a magnetic applied field demonstrated a phase transition from ferromagnetic to paramagnetic. The value of T C decreased from 345 to 330 K when x increases from 0.20 to 0.35. Arrott plots shown that all samples exhibit a second-order magnetic phase transition. The maximum absolute values of the magnetic entropy change were found to be 0.91, 0.93, 1.12, and 1.10 J/kg for x = 0.2, 0.25, 0.3, and 0.35, respectively. Moreover, relative cooling power has been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Jerbi, A., Thaljaoui, R., Krichene, A., Boujelben, W.: Structural, magnetic and electrical study of polycrystalline Pr0.55,Sr0.45−x K xMnO3 (x = 0, 0.05 and 0.1). Phys. B Condens. Matter 442, 21–28 (2014). doi:10.1016/j.physb.2014.02.001

    Article  ADS  Google Scholar 

  2. Sari, O., Balli, M.: From conventional to magnetic refrigerator technology. Int. J. Refrig. 37, 8–15 (2014). doi:10.1016/j.ijrefrig.2013.09.027

    Article  Google Scholar 

  3. Phan, M.-H., Yu, S.-C.: Review of the magnetocaloric effect in manganite materials. J. Magn. Magn. Mater. 308(2), 325–340 (2007). doi:10.1016/j.jmmm.2006.07.025

    Article  ADS  Google Scholar 

  4. Abassi, M., Mohamed, Z., Dhahri, J., Hlil, E.K.: Theoretical investigations on the magnetocaloric and electrical properties of a perovskite manganite La0.67Ba0.1Ca0.23MnO3. Dalton Trans. 45(11), 4736–4746 (2016). doi:10.1039/c5dt04490a

    Article  Google Scholar 

  5. Pecharsky, V.K., Gschneidner, Jr, K.A.: Advanced magnetocaloric materials: what does the future hold?. Int. J. Refrig. 29(8), 1239–1249 (2006). doi:10.1016/j.ijrefrig.2006.03.020

  6. Romero Gómez, J., Ferreiro Garcia, R., De Miguel Catoira, A., Romero Gómez, M.: Magnetocaloric effect: a review of the thermodynamic cycles in magnetic refrigeration. Renew. Sustain. Energy Rev. 17, 74–82 (2013). doi:10.1016/j.rser.2012.09.027

    Article  Google Scholar 

  7. Smith, A., Bahl, C.R.H., Bjørk, R., Engelbrecht, K., Nielsen, K.K., Pryds, N.: Materials challenges for high performance magnetocaloric refrigeration devices. Adv. Energy Mater. 2(11), 1288–1318 (2012). doi:10.1002/aenm.201200167

    Article  Google Scholar 

  8. Földeàki, M., Chahine, R., Bose, T.K.: Magnetic measurements: a powerful tool in magnetic refrigerator design. J. Appl. Phys. 77(7), 3528–3537 (1995). doi:10.1063/1.358648

    Article  ADS  Google Scholar 

  9. Nirmala, R., Morozkin, A.V., Malik, S.K.: Magnetocaloric effect in rare-earth intermetallics: recent trends. Pramana 84(6), 977–985 (2015). doi:10.1007/s12043-015-1000-1

    Article  ADS  Google Scholar 

  10. Dagotto, E., Hotta, T., Moreo, A.: Colossal magnetoresistant materials: the key role of phase separation. Phys. Rep. 344(1–3), 1–153 (2001). doi:10.1016/S0370-1573(00)00121-6

    Article  ADS  Google Scholar 

  11. Yu, B.F., Gao, Q., Zhang, B., Meng, X.Z., Chen, Z.: Review on research of room temperature magnetic refrigeration. Int. J. Refrig. 26(6), 622–636 (2003). doi:10.1016/s0140-7007(03)00048-3

    Article  Google Scholar 

  12. Chahara, K.I., Ohno, T., Kasai, M., Kozono, Y.: Magnetoresistance in magnetic manganese oxide with intrinsic antiferromagnetic spin structure. Appl. Phys. Lett. 63(14), 1990–1992 (1993). doi:10.1063/1.110624

    Article  ADS  Google Scholar 

  13. Phan, M.-H., Peng, H.-X., Yu, S.-C., Tho, N.D., Nhat, H.N., Chau, N.: Manganese perovskites for room temperature magnetic refrigeration applications. J. Magn. Magn. Mater. 316(2), e562–e565 (2007). doi:10.1016/j.jmmm.2007.03.021

    Article  Google Scholar 

  14. Morelli, D.T., Mance, A.M., Mantese, J.V., Micheli, A.L.: Magnetocaloric properties of doped lanthanum manganite films. J. Appl. Phys. 79(1), 373 (1996). doi:10.1063/1.360840

    Article  ADS  Google Scholar 

  15. Xu, L., Fan, J., Zhu, Y., Shi, Y., Zhang, L., Pi, L., Zhang, Y., Shi, D.: Magnetocaloric effect and spontaneous magnetization in perovskite manganite Nd0.55,Sr0.45MnO3. Mater. Res. Bull. 73, 187–191 (2016). doi:10.1016/j.materresbull.2015.08.024

    Article  Google Scholar 

  16. Kossi, S.E., Ghodhbane, S., Mnefgui, S., Dhahri, J., Hlil, E.K.: The impact of disorder on magnetocaloric properties in Ti-doped manganites of La0.7Sr0.25Na0.05Mn(1−x)TixO3 (0x0.2). J. Magn. Magn. Mater. 395, 134–142 (2015). doi:10.1016/j.jmmm.2015.07.050

    Article  ADS  Google Scholar 

  17. Tilley, R.J.D.: Perovskites: structure-property relationships. Cheminform 35(47), 1147–1152 (2004)

    Google Scholar 

  18. Franco, V., Blázquez, J.S., Ingale, B., Conde, A.: The magnetocaloric effect and magnetic refrigeration near room temperature: materials and models. Annu. Rev. Mater. Res. 42(1), 305–342 (2012). doi:10.1146/annurev-matsci-062910-100356

    Article  ADS  Google Scholar 

  19. McBride, K., Cook, J., Gray, S., Felton, S., Stella, L., Poulidi, D.: Evaluation of La1−xSrxMnO3(0 x 0.4) synthesised via a modified sol–gel method as mediators for magnetic fluid hyperthermia. CrystEngComm 18 (1), 407–416 (2016). doi:10.1039/c5ce01890k

    Article  Google Scholar 

  20. Coey, J.M.D., Viret, M., von Molnár, S.: Mixed-valence manganites. Adv. Phys. 48(2), 167–293 (1999). doi:10.1080/000187399243455

    Article  ADS  Google Scholar 

  21. Mannella, N., Booth, C., Rosenhahn, A., Sell, B., Nambu, A., Marchesini, S., Mun, B., Yang, S.-H., Watanabe, M., Ibrahim, K.: Temperature-dependent evolution of the electronic and local atomic structure in the cubic colossal magnetoresistive manganite La1−xSrxMnO3. Phys. Rev. B 77(12), 125134 (2008)

    Article  ADS  Google Scholar 

  22. Zener, C.: Interaction between the d-shells in the transition metals. II. Ferro-magnetic compounds of manganese with perovskite structure. Phys. Rev. 82(1), 403–405 (1951)

    Article  ADS  Google Scholar 

  23. Rodriguez-Martinez, L.M., Attfield, J.P.: Cation disorder and the metal-insulator transition temperature in manganese oxide perovskites. Phys. Rev. B 58(5), 2426–2429 (1998)

    Article  ADS  Google Scholar 

  24. Rao, G.H., Sun, J.R., Bärner, K., Hamad, N.: Crystal structure and magnetoresistance of Na-doped LaMnO 3. J. Phys.: Condens. Matter 11(6), 1523 (1999)

    ADS  Google Scholar 

  25. Abdelmoula, N., Cheikh-Rouhou, A., Reversat, L.: Structural, magnetic and magnetoresistive properties of La0.7Sr0.3−xNaxMnO3 manganites. J. Phys.: Condens. Matter 13(1), 449 (2001)

    ADS  Google Scholar 

  26. Wang, G.-Y., Tang, Y.-G., Song, Q.-X., Zhang, M.-Y., Peng, Z-S.: Electric-transport properties and temperature stability of magnetoresistance of composite system between La8/9Sr1/45Na4/45MnO3 and Sb2O3. Rare Met. 32(2), 363–368 (2013). doi:10.1007/s12598-013-0059-4

    Article  Google Scholar 

  27. Abdallah-Ben Ammar, A., Cheikhrouhou-Koubaa, W., Koubaa, M., Nowak, S., Lecoq, H., Sicard, L., Ammar, S., Cheikhrouhou, A.: Effect of sodium substitution on the physical properties of sol–gel made La0.65Ca0.35MnO3 ceramics. Mater. Chem. Phys. 148(1), 751–758 (2014). doi:10.1016/j.matchemphys.2014.08.044

    Article  Google Scholar 

  28. Keshri, S., Biswas, S., Wiśniewski, P.: Studies on characteristic properties of superparamagnetic La0.67Sr0.33−x K xMnO3 nanoparticles. J. Alloys Compd. 656, 245–252 (2016). doi:10.1016/j.jallcom.2015.09.176

    Article  Google Scholar 

  29. D., S.: Chemical synthesis of ceramic materials. J. Mater. Chem. 7(8), 1297–1305 (1997)

    Article  Google Scholar 

  30. Rietveld, H.: A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 2(2), 65–71 (1969). doi:10.1107/S0021889869006558

    Article  Google Scholar 

  31. Shannon, R.D.: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A 32(5), 751–767 (1976). doi:10.1107/S0567739476001551

    Article  ADS  Google Scholar 

  32. Jerbi, A., Krichene, A., Thaljaoui, R., Boujelben, W.: Structural, magnetic, and electrical study of polycrystalline Pr0.55Sr0.45−xNaxMnO3(x = 0.05 and 0.1). J. Supercond. Nov. Magn. 29(1), 123–132 (2015). doi:10.1007/s10948-015-3217-0

    Article  Google Scholar 

  33. Goldschmidt, V.M.: Die gesetze der krystallochemie. Naturwissenschaften 14(21), 477–485 (1926)

    Article  ADS  Google Scholar 

  34. Krad, I., Bidault, O., Geoffroy, N., Maaoui, M.E.L.: Preparation and characterization of K0.5Bi0.5TiO3 particles synthesized by a stirring hydrothermal method. Ceram. Int. 42 (1), 3751–3756 (2016). doi:10.1016/j.cera-mint.2015.10.158

    Article  Google Scholar 

  35. Amaral, J.S., Amaral, V.S.: On estimating the magnetocaloric effect from magnetization measurements. J. Magn. Magn. Mater. 322(9–12), 1552–1557 (2010). doi:10.1016/j.jmmm.2009.06.013

    Article  ADS  Google Scholar 

  36. Banerjee, B.K.: On a generalised approach to first and second order magnetic transitions. Phys. Lett. 12(1), 16–17 (1964). doi:10.1016/0031-9163(64)91158-8

    Article  ADS  Google Scholar 

  37. Arrott, A.: Criterion for ferromagnetism from observations of magnetic isotherms. Phys. Rev. 108(6), 1394–1396 (1957)

    Article  ADS  Google Scholar 

  38. Anwar, M.S., Ahmed, F., Heun Koo, B.: Influence of Ce addition on the structural, magnetic, and magnetocaloric properties in La0.7−xCexSr0.3MnO3 (0x0.3) ceramic compound. Ceram. Int. 41(2), 5821–5829 (2015). doi:10.1016/j.ceramint.2015.01.011

    Article  Google Scholar 

  39. Kallel, S., Kallel, N., Peña, O., Oumezzine, M.: Large magnetocaloric effect in Ti-modified La0.70Sr0.30MnO3 perovskite. Mater. Lett. 64(9), 1045–1048 (2010). doi:10.1016/j.matlet.2010.02.005

    Article  Google Scholar 

  40. Wang, G.F., Li, L.R., Zhao, Z.R., Yu, X.Q., Zhang, X.F.: Structural and magnetocaloric effect of Ln0.67Sr0.33MnO3 (Ln = La, Pr and Nd) nanoparticles. Ceram. Int. 40(10), 16449–16454 (2014). doi:10.1016/j.cerami-nt.2014.07.154

    Article  Google Scholar 

  41. Raoufi, T., Ehsani, M.H., Khoshnoud, D.S.: Magnetocaloric properties of La0.6Sr0.4MnO3 prepared by solid state reaction method. J. Alloys Compd. 689, 865–873 (2016). doi:10.1016/j.jallcom.2016.08.063

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the National Nature Science Foundation of China (project no. 51562006)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengguang Zou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kong, X., Wang, J., Zou, Z. et al. Effect of Sodium Doping on Magnetic and Magnetocaloric Properties of La0.65Sr0.35MnO3 Manganites. J Supercond Nov Magn 31, 373–379 (2018). https://doi.org/10.1007/s10948-017-4217-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-017-4217-z

Keywords

Navigation