Skip to main content
Log in

Effects of Annealing Temperature on Microstructure and Magnetic Properties of Ni0.05Zn0.95Fe2O4 Nanoparticles

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

The magnetic behavior of Ni0.05Zn0.95Fe2O4 nanoparticles synthesized by the sol–gel technique route was clarified To figure out the influence of annealing temperature on the structure of Ni0.05Zn0.95Fe2O4 particles, x-ray diffraction (XRD) tool was used and revealed spinel cubic structure without any secondary phases. The particle formation and sizes were obtained using scanning electron microscope (SEM). Elemental composition of the nanoparticles was also provided by an energy-dispersive x-ray analysis tool (EDX). The magnetic behaviors of the synthesized powders annealed at varying temperatures were determined by vibrating sample quantum design PPMS measurement system tool. The MH curves of the samples showed that the samples had S-shape but they reached no saturation state at the presence even at 30 kOe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Gorter, E.W.: Saturation magnetization and crystal chemistry of ferrimagnetic oxides. Philips Res. Repts. 9, 295–320 (1954)

    Google Scholar 

  2. Selim, M.S., Turkey, G., Shouman, M.A., El-Shobaky, G.A.: Solid State Ionics. 120, 173 (1999)

    Article  Google Scholar 

  3. Deraz, N.M., Alarii, A.: Structural, morphological and magnetic properties of nano-crystalline zinc substituted cobalt ferrite system. J. Anal. Appl. Pyrolysis 94, 41–47 (2012)

    Article  Google Scholar 

  4. Ozin, G.A.: Characterization of semiconductor heterostructures and nanostructures. Adv. Mater. 4, 612 (1992)

    Article  Google Scholar 

  5. Gleiter, H.: Nanostructured Materials. Adv. Mater. 4, 474 (1992)

    Article  Google Scholar 

  6. Zhou, Z.H., Xue, J.M., Wang, J., Chan, H.S. O., Yu, T., Shen, Z.X.J.: NiFe2O4 nanoparticles formed in situ in silica matrix by mechanical activation. Appl. Phys. 91, 6015 (2002)

    Article  Google Scholar 

  7. Heiba, Z.K., Mohamed, M.B., Arda, L., Dogan, N.: Cation distribution correlated with magnetic properties of nanocrystalline gadolinium substituted nickel ferrite. J. Magn. Magn. Mater. 391, 195–202 (2015)

    Article  ADS  Google Scholar 

  8. Heiba, Z.K., Mohamed, M.B., Wahba, A.M., Arda, L.: Magnetic and structural properties of nanocrystalline cobalt-substituted magnesium–manganese ferrite. J. Supercond. Nov. Magn. 28, 2517–2524 (2015)

    Article  Google Scholar 

  9. Dogan, N., Bingolbali, A., Arda, L., Akcan, D.: Synthesis, structure, and magnetic properties of Ni1−xZn x Fe2O4 Nanoparticles. doi:10.1007/s10948-016-3899-y

  10. Shinde, S.S., Jadhav, K.M.: Electrical and dielectric properties of silicon substituted cobalt ferrites. Mater. Lett. 37, 63–67 (1998)

    Article  Google Scholar 

  11. Sawataky, G.A., Van Der Woude, F., Morrish, A.H.: Cation distributions in octahedral and tetrahedral sites of the ferrimagnetic spinel CoFe2O4. J. Appl. Phys. 39, 1204 (1968)

    Article  ADS  Google Scholar 

  12. Rondinone, A.J., Samia, A.C.S., Zhang, Z.J.: Characterizing the magnetic anisotropy constant of spinel cobalt ferrite nanoparticles. Appl. Phys. Lett. 76, 3624–3626 (2000)

    Article  ADS  Google Scholar 

  13. Pallai, V., Shah, D.O.: Synthesis of high-coercivity cobalt ferrite particles using water-in-oil microemulsions. J. Magn. Magn. Mater. 163, 243–248 (1996)

    Article  ADS  Google Scholar 

  14. Skomski, R.: Nanomagnetics. J. Phys. Condens. Matter. 15, R841–934 (2003)

    Article  ADS  Google Scholar 

  15. Ramankutty, C.G., Sugunan, S.: Surface properties and catalytic activity of ferrospinels of nickel, cobalt and copper, prepared by soft chemical methods. Appl. Catal. A 218, 39–51 (2001)

    Article  Google Scholar 

  16. Reddy, C.V.G., Manorama, S.V., Rao, V.J.: Semiconducting gas sensor for chlorine based on inverse spinel nickel ferrite. Sens. Actuators B: Chemical 55, 90–95 (1999)

    Article  Google Scholar 

  17. Candlish, I.E., Kear, B.H., Kim, B.K.: Processing and properties of nanostructured WC-Co. Nanostuct. Mater. 1, 119–124 (1992)

    Article  Google Scholar 

  18. Skandan, G., Hahn, H., Roddy, M., Cannon, W.R.: Ultrafine-grained dense monoclinic and tetragonal zirconia. J. Am. Ceram. Soc. 77, 1706–1710 (1994)

    Article  Google Scholar 

  19. Kishimoto, M., Sakurai, Y., Ajima, T.: Magneto-optical properties of Ba-ferrite particulate media. J. Appl. Phys. 76, 7506–7509 (1994)

    Article  ADS  Google Scholar 

  20. Li, F., Liu, J.J., Evans, D.G., Duan, X.: Stoichiometric synthesis of pure MFe2O4 (M = Mg, Co, and Ni) spinel ferrites from tailored layered double hydroxide (hydrotalcite-like) precursors. Chem. Mater. 16, 1597–1602 (2004)

    Article  Google Scholar 

  21. Goya, G.F., Rechenberg, H.R.: Ionic disorder and Néel temperature in ZnFe2O4 nanoparticles. J. Magn. Magn. Mater. 196, 191–192 (1999)

    Article  ADS  Google Scholar 

  22. Kasapoglu, N., Birsoz, B., Baykal, A., Koseoglu, Y., Toprak, M.S.: Synthesis and magnetic properties of octahedral ferrite Ni χ Co1– χ Fe2O4 nanocrystals. Cent. Eur. J. Chem. 5, 570–580 (2007)

    Google Scholar 

  23. Baykal, A., Kasapoglu, N., Koseoglu, Y., Toprak, M.S., Bayrakdar, H.: CTAB-assisted hydrothermal synthesis of NiFe2O4 and its magnetic characterization. J. Alloys Compounds 464, 514–518 (2008)

    Article  Google Scholar 

  24. Lutterotti, L.: Maud 2.33, http://www.ing.unitn.it/~maud/

  25. El Sayed, A.M.: Ceram. Int. 28, 363–367 (2002)

    Article  Google Scholar 

  26. Sheikh, A.D., Mathe, V.L.: Anomalous electrical properties of nanocrystalline Ni–Zn ferrite. J. Mater. Sci. 43, 2018 (2008)

    Article  ADS  Google Scholar 

  27. Koseoglu, Y., Yildiz, H., Yılgın, R.: Synthesis, characterization and superparamagnetic resonance studies of znfe2 o 4 nanoparticles. J. Nanosci. Nanotechnol. 12, 2261–2269 (2012)

    Article  Google Scholar 

  28. Nathani, H., Misra, R.D.K.: Surface effects on the magnetic behavior of nanocrystalline nickel ferrites and nickel ferrite-polymer nanocomposites. Mater. Sci. Eng. 113, 228 (2004)

    Article  Google Scholar 

Download references

Acknowledgments

The support was provided by the Research Fund of Bahcesehir University with the project no: BAU-2010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Arda.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arda, L., Dogan, N. & Boyraz, C. Effects of Annealing Temperature on Microstructure and Magnetic Properties of Ni0.05Zn0.95Fe2O4 Nanoparticles. J Supercond Nov Magn 31, 365–371 (2018). https://doi.org/10.1007/s10948-017-4203-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-017-4203-5

Keywords

Navigation