Skip to main content
Log in

Phenomenological Model for Prediction of Cation Substitution Distribution and Some Physical Properties in Mn3+-Doped Barium Hexaferrite

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

The magnetic properties of M-type barium ferrite are strongly related to the distribution of Fe3+ cation within the crystal structure. In this work, we propose a simple phenomenological model to predict the Fe3+ cation distribution for BaFe12−x Mn x O19 compounds. From the proposed model, it was possible to estimate physical properties such as the theoretical density, the saturation magnetization, and the anisotropic constant. The obtained results were compared with experimental ones extracted from previous reported papers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Pieper, M.W., Morel, A., Kools, F.: NMR analysis of La+Co doped M-type ferrites. J. Magn. Magn. Mater. 242-245, 1408–1410 (2002)

    Article  ADS  Google Scholar 

  2. Kreisel, J., Vincent, H., Tasset, F., Paté, M., Wolfers, P.: A single-crystal neutron diffraction study of the magnetic anisotropy change in Ba-hexaferrites. Physica B. 276-278, 688–689 (2000)

    Article  ADS  Google Scholar 

  3. Rösler, S., Waterwig, P., Langbein, H.: Synthesis and characterization of hexagonal ferrites BaFe12−2x Zn x Ti x O19 (0x2) by thermal decomposition of freeze-dried precursors. Cryst. Res. Tecnol. 38, 927–934 (2003)

    Article  Google Scholar 

  4. Haijun, Z., Zhichao, L., Chengliang, M., Xi, Y., Liangying, Z., Mingzhong, W.: Complex permittivity, permeability, and microwave absorption of Zn- and Ti-substituted barium ferrite by citrate sol-gel process. Mat. Sci. Eng. B 96, 289–295 (2002)

    Article  Google Scholar 

  5. Wartewig, P., Krause, M.K., Esquinazi, P., Rösler, S., Sonntag, R.: Magnetic properties of Zn- and Ti-substituted barium hexaferrite. J. Magn. Magn. Mater. 192, 83–99 (1999)

    Article  ADS  Google Scholar 

  6. Lisjak, D., Drofenik, M.: Synthesis and characterization of ASn-substituted (A=Zn, Ni, Co) BaMhexaferrite powders and ceramics. J. Eur. Ceram. Soc. 24, 1841–1845 (2004)

    Article  Google Scholar 

  7. Bashkirov, S.S., Liberman, A.B., Valiullin, A.A., Zaripova, L.D., Kokin, S.V.: Effect of Mn 2+ ions on the magnetic microstructure of hexaferrites. Phys. Solid State 42, 79–83 (2000)

    Article  ADS  Google Scholar 

  8. Mariño, P.A., Moreno, A.C., Orozco, G., Garcia, J.A., Govea, E.: Structural and magnetic study of the Ti 4 + -doped barium hexaferrite ceramic samples: Theoretical and experimental results. Physica B. 406, 3130–3136 (2011)

    Article  ADS  Google Scholar 

  9. Mariño-Castellanos, P.A., Anglada-Rivera, J., Cruz-Fuentes, A., Lora-Serrano, R.: Magnetic and microstructural properties of the Ti 4 + -doped Barium hexaferrite. J Magn. Magn. Mater. 280, 214 (2004)

    Article  ADS  Google Scholar 

  10. Chesnokov, A.G., Naiden, E.P.: Influence of diamagnetic cations Sc 3 + on the magnetoelastic energy of M-type hexaferrites. Phys. Solid State 43, 1728–1730 (2001)

    Article  ADS  Google Scholar 

  11. Kamzin, A.S.: Surface magnetism of Sc-substituted Ba-M hexaferrites. JETP 89, 890–898 (1999)

    Article  ADS  Google Scholar 

  12. Popov, M.A., Zavislyak, I.V., Tatarenko, A.S., Srinivasan, G., Balbashov, A.M.: Magnetic and dielectric excitations in the W-Band in aluminum substituted barium and strontium hexaferrites. IEEE Trans. Magn. 45, 2053–2058 (2009)

    Article  ADS  Google Scholar 

  13. Choi, D.H., An, S.Y., Lee, S.W., Shim, I., Kim, C.h.S.: Site occupancy and anisotropy distribution of Al substituted Ba-ferrite with high coercivity. Phys. Stat Sol. B 241, 1736–1739 (2004)

    Article  ADS  Google Scholar 

  14. Ounnunkad, S., Winotai, P.: Properties of Cr-substituted M-type barium ferrites prepared by nitratecitrate gel-autocombustion process. J. Magn. Magn. Mater. 301, 292–300 (2006)

    Article  ADS  Google Scholar 

  15. Kim, Ch.S., An, S.Y., Son, J.H., Lee, J., Oak, H.N.: Magnetic properties of Cr 3+ substituted BaFe12O19 powders grown by a sol-gel method. IEEE Trans. Magn. 35, 3160–3162 (1999)

    Article  ADS  Google Scholar 

  16. Parker, J., Studders, R.J. (eds.): Permanent Magnets and Their Application, vol. 406. Wiley, New York (1962)

    Google Scholar 

  17. Geiler, A.L., Yang, A., Zuo, X., Yoon, S.D., Chen, Y., Harris, V.G., Vittoria, C.: Atomic scale design and control of cation distribution in hexagonal ferrites. Phys. Rev. Lett. 101, 067201 (2008)

    Article  ADS  Google Scholar 

  18. Wu, C., Yu, Z., Yang, Y., Sun, K., Nie, J., Liu, Y., Jiang, X., Lan, Z.: Computational and experimental study on the cation distribution of La-Cu substituted barium hexaferrites. J. Alloys Compd 664, 406–410 (2016)

    Article  Google Scholar 

  19. Lee, I.K., Sur, J.C., Shim, I.B., Kim, C.S.: The effect of manganese substituted M-type hexagonal Ba-ferrite. J. Magn. 14(2), 93–96 (2009)

    Article  Google Scholar 

  20. Sharma, P., Rocha, R.A., Medeiros, S.N., Hallouche, B., Paesano, Jr. A.: Structural and magnetic studies on mechanosynthesized BaFe12−x Mn x O19. J. Magn. Magn. Mater. 316, 2933 (2007)

    Article  Google Scholar 

  21. Sharma, P., Rocha, R.A., De Medeiros, S.N., Paesano, Jr. A., Hallouche, B.: Structural, Mössbauer and magnetic studies on Mn-substituted barium hexaferrites prepared by high energy ball milling. Hyperfine Interact. 175, 77–84 (2007)

    Article  ADS  Google Scholar 

  22. Chiang, Y.M., Birnie, D.P., Kingery, W.D. (eds.): Physical Ceramics, vol. 522. Wiley, New York (1997)

    Google Scholar 

  23. Glasser, L.: Lattice energies of crystals with multiple ions: a generalized Kapustinskii equation. Inorg. Chem. 34(20), 4935–4936 (1995)

    Article  Google Scholar 

  24. Glasser, L., Brooke Jenkins, H.D.: Lattice energies and unit cell volumes of complex ionic solids. J. Amer. Chem. Soc. 122(4), 632–638 (2000)

    Article  Google Scholar 

  25. Cullity, B.D., Graham, C.D.: Introduction to Magnetic Materials, vol. 177. Wiley, New Jersey (2009)

    Google Scholar 

  26. Xu, Y., Yang, G.L., Chu, D.P., Zhai, H.R.: Magnetic anisotropy of BaM ferrites. J. Magn. Magn. Mater. 31-34, 815–816 (1983)

    Article  ADS  Google Scholar 

  27. Nemrava, S., Vinnik, D.A., Hu, Z., Valldor, M., Chang-Yang, K., Zherebtsov, D.A., Gudkova, S.A., Chien-Te, C., Hao Tjeng, L., Niewa, R.: Three oxidation states of manganese in the barium hexaferrite BaFe12−x Mn x O19. Inorg. Chem. 56, 3861–3866 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Govea-Alcaide.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matilla-Arias, J., Govea-Alcaide, E., Mariño-Castellanos, P. et al. Phenomenological Model for Prediction of Cation Substitution Distribution and Some Physical Properties in Mn3+-Doped Barium Hexaferrite. J Supercond Nov Magn 31, 251–256 (2018). https://doi.org/10.1007/s10948-017-4198-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-017-4198-y

Keywords

Navigation