Journal of Superconductivity and Novel Magnetism

, Volume 31, Issue 1, pp 233–239 | Cite as

Structural, Electronic, Magnetic, and Optical Properties of Half-Heusler Alloys RuMnZ (Z = P, As): a First-Principle Study

  • Nasir MehmoodEmail author
  • Rashid Ahmad
Original Paper


Half-Heusler alloys RuMnZ (Z = P, As ) are studied in the framework of Density Functional Theory (DFT). Structural, electronic, magnetic, and optical properties are calculated and analyzed using the WIEN2k simulation code. All the calculations are done using the full potential linearized augmented plane wave (FP-LAPW) method. Equilibrium lattice parameters are found to be in the range 5.5–5.6 Å. Band gaps of the compounds and density of states (DoS) analysis reveal that the minority spin-down states are semi-conducting while the majority spin-up states are conducting confirming the half-metallic nature of the compounds. Hence, at Fermi level, states are 100 % polarized. The value of the total magnetic moment is found to be 2, i.e., MTot = 2μ B. Several optical properties, including dielectric function, reflectivity, refractive index, conductivity, and absorption coefficient are calculated as well. It is revealed from the imaginary part of the dielectric function that the compounds are optically metallic.


Half-Heusler alloys Half-metallic compounds Optical properties Ferromagnetic materials 


  1. 1.
    de Groot, R.A., Mueller, F.M., Engen, P.G.V., Buschow, K.H.J.: New class of materials: half-metallic ferromagnets. Phys. Rev. Lett. 50, 2024 (1983)ADSCrossRefGoogle Scholar
  2. 2.
    de Groot, R.A., Mueller, F.M., Engen, P.G.V., Buschow, K.H.J.: Recent developments in half-metallic magnetism. J. Magn. Magn. Mater. 54, 1377 (1986)ADSCrossRefGoogle Scholar
  3. 3.
    Shwarz, K.: CrO2 predicted as a half-metallic ferromagnet. J. Phys. F Metal Phys. 16, L211 (1986)ADSCrossRefGoogle Scholar
  4. 4.
    Martar, S., Demazeau, G., Sticht, J., Eyert, V., Kübler, J.: Etude de la structure électronique et magnétique de CrO2. J. Phys. I France 2, 315 (1992)CrossRefGoogle Scholar
  5. 5.
    Sattar, M.A., Rashid, M., Hashmi, M.R., Ahmad, S.A., Imran, M., Hussain, F.: Etude de la structure électronique et magnétique de CrO2. J. Phys. I France 2, 315 (1992)CrossRefGoogle Scholar
  6. 6.
    Huang, W., Wang, X., Chen, X., Lu, W., Damewood, L., Fong, C.Y.: Structural and electronic properties of half-Heusler alloys PtXBi (with X = Mn, Fe ,Co, Ni) calculated from first principles. J. Magn. Magn. Mater. 377, 252 (2015)ADSCrossRefGoogle Scholar
  7. 7.
    Ahmad, M., Naeemullah, G., Murtaza, R., Khenata, S.B., Omran, A.: Bouhemadou, structural, elastic, electronic, magnetic and optical properties of RbSrX (C, Si, Ge) half-Heusler compounds. J. Magn. Magn. Mater. 377, 204 (2015)ADSCrossRefGoogle Scholar
  8. 8.
    Sattar, M.A., Rashid, M., Hashmi, M.R., Ahmad, S.A., Imran, M., Hussain, F.: Full-scale computation for all the thermoelectric property parameters of half-Heusler compounds. Sci. Rep. 6, 22778 (2016)CrossRefGoogle Scholar
  9. 9.
    Sattar, M.A., Rashid, M., Hashmi, M.R., Ahmad, S.A., Imran, M., Hussain, F.: Half-heusler compounds with a 1 eV (1.7 eV) direct band gap, lattice-matched to GaAs (Si), for solar cell application: A first-principles study. Phys. Status Solidi B 253, 253 (2016)Google Scholar
  10. 10.
    Galanakis, I., Mavropoulos, P.: Zinc-blende compounds of transition elements with N, P, As, Sb, S, Se, and Te as half-metallic systems. Phys. Rev. B 67, 104417(1) (2003)ADSCrossRefGoogle Scholar
  11. 11.
    Galanakis, I., Mavropoulos, P.: First-principles study of half-metallic ferromagnetism in Zn1−xCrSe. J. Magn. Magn. Mater. 321, 198 (2009)ADSCrossRefGoogle Scholar
  12. 12.
    Kobayashi, K.I., Kimura, T., Sawada, H., Terakura, K., Tokura, Y.: Room-temperature magnetoresistance in an oxide material with an ordered double-perovskite structure. Nature 95, 677 (1998)ADSCrossRefGoogle Scholar
  13. 13.
    Zhu, Z.H., Yan, X.H.: Half-metallic properties of perovskite BaCro3 and Bacr0.5Ti0.5O3 superlattice: LSDA+u calculations. J. Appl. Phys. 106, 023713(1) (2009)ADSGoogle Scholar
  14. 14.
    Soeya, S., Hayakawa, J., Takahashi, H., Ito, K., Yamamoto, C., Kida, A., Asano, H., Matsui, M.: Development of half-metallic ultrathin Fe3O4 films for spin-transport devices. Appl. Phys. Lett. 95, 677 (1998)Google Scholar
  15. 15.
    Dho, J., Ki, S., Gubkin, A.F., Park, J.M.S., Sherstobitova, E.A.: A neutron diffraction study of half-metallic ferromagnet nanorods. J. Phys. Chem. Solids 150, 86 (2010)Google Scholar
  16. 16.
    Kronik, L., Jain, M., Chelikowsky, J.R.: Electronic structure and spin polarization of MnxGa1−xN. Phys. Rev B 66, 041203 (2002)ADSCrossRefGoogle Scholar
  17. 17.
    Noor, N.A., Ali, S., Shaukat, A.: First principles study of half-metallic ferromagnetism in Cr-doped CdTe. J. Phys. Chem. Solids 72, 841 (2011)ADSCrossRefGoogle Scholar
  18. 18.
    Nourmohammadi, A., Abolhasani, M.R.: First-principle study of full Heusler using {PBE0} hybrid functional. Solid State Commun. 150, 1501 (2010)ADSCrossRefGoogle Scholar
  19. 19.
    Wang, W.Z., Wei, X.P.: Half-metallic antiferromagnetic in Mn2ZnCa. Comput. Mater. Sci. 50, 2253 (2011)CrossRefGoogle Scholar
  20. 20.
    Nourmohammadi, A., Abolhasani, M.R.: Tunneling between ferromagnetic films. Phys. Lett. A 54, 225 (1975)CrossRefGoogle Scholar
  21. 21.
    Ohno, H.: Making nonmagnetic semiconductors ferromagnetic. Science 281, 951 (1998)ADSCrossRefGoogle Scholar
  22. 22.
    Jimbo, M., Hirano, S., Meguro, K., Tsunashima, S., Uchiyama, S.: Giant magnetoresistance with low saturation field in ni 14 Fe 13 Co 73 / Cu multilayers. Jpn. J. Appl. Phys. 33, L850 (1994)ADSCrossRefGoogle Scholar
  23. 23.
    Oppeneer, P.M., Antonov, V.N., Yaresko, A.N., Perlov, A. Ya., Kraft, T., Eschrig, H.: First-principles theory and predictions of the Kerr effect. J. Magn. Soc. Jpn 20, S147 (1996)CrossRefGoogle Scholar
  24. 24.
    Ma, J., Hegde, V.I., Munira, K., Xie, Y., Keshavarz, S., Mildebrath, D.T., Wolverton, C., Ghosh, A.W., Butler, W.H.: Computational investigation of half-Heusler compounds for spintronics applications. Phys. Rev. B 95, 024411 (2017)ADSCrossRefGoogle Scholar
  25. 25.
    Blaha, P., Schwarz, K., Madsen, G.K.H., Kvasnicka, D., Luitz, J.: WIEN2K, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties, Karlheinz Schwarz, Techn. Universität Wien, Austria, Wien, Austria (2001)Google Scholar
  26. 26.
    Singh, D.J., Nordström, L.: Planewaves, Pseudopotentials, and the LAPW Method. Springer, New York (2006)Google Scholar
  27. 27.
    Perdew, J.P., Chevary, J.A., Vosko, S.H., Jackson, K.A., Pederson, M.R., Singh, D.J., Fiolhais, C.: Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 46, 6671 (1992)ADSCrossRefGoogle Scholar
  28. 28.
    Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996)ADSCrossRefGoogle Scholar
  29. 29.
    Barth, U.V., Hedin, L.: A local exchange-correlation potential for the spin polarized case. i. J. Phys. C Solid State Phys. 5, 1629 (1972)ADSCrossRefGoogle Scholar
  30. 30.
    Pant, M.M., Rajagopal, A.K.: Theory of inhomogeneous magnetic electron gas. Solid State Commun. 10, 1157 (1972)ADSCrossRefGoogle Scholar
  31. 31.
    Galankis, I., Dederiches, P.H.: Half-Metallic Alloys: Fundamentals and Applications. Springer, Berlin (2005)CrossRefGoogle Scholar
  32. 32.
    Galanakis, I., Dederichs, P.H., Papanikolaou, N.: SLater-Pauling behavior and origin of the half-metallicity of the full-Heusler alloys. Phys. Rev. B 66, 174429 (2002)ADSCrossRefGoogle Scholar
  33. 33.
    Fox, A.M.: Optical Properties of Solids. Oxford University Press, New York (2001)Google Scholar
  34. 34.
    Wooten, F.: Optical Properties of Solids. Academic Press, New York (1972)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of PhysicsKohat University of Science and TechnologyKohatPakistan

Personalised recommendations