Advertisement

Journal of Superconductivity and Novel Magnetism

, Volume 30, Issue 12, pp 3509–3512 | Cite as

Role of Perpendicular Anisotropy in the Zigzag Domain Wall Structure in Thin Magnetic Films

  • B. KaplanEmail author
Original Paper
  • 187 Downloads

Abstract

We investigate apparently zigzag domain walls in ultrathin magnetic films and calculate the total energy in zero applied field considering anisotropies in the second-order approximation. We discuss the change in zigzag wall morphology and scale as a function of the dipolar length and the total energy depend on film parameters exclusively anisotropy constants, crystallographic orientation and film thickness for a given dipolar length. We explain also the role of the second-order anisotropy in the total energy and the dynamics response of the in-plane magnetization for a given dipolar length. We use some constants in connection with experimental data reported for amorphous TbCo films grown in external in-plane magnetic field by high-frequency ion sputtering and for MnAs on GaAs films.

Keywords

Thin film Perpendicular anisotropy Domain walls and domain structure 

References

  1. 1.
    Bloch, F.: Z. Physik. 74, 295 (1932)ADSCrossRefGoogle Scholar
  2. 2.
    Ukleev, V., et al.: J. Supercond. Nov. Magn. 28, 3571 (2015)CrossRefGoogle Scholar
  3. 3.
    Engel-Herbert, R., et al.: J. Magn. Magn. Mater. 305, 457 (2006)ADSCrossRefGoogle Scholar
  4. 4.
    Taylor, R.C.: IEEE Trans. Magn. 16, 902 (1980)ADSCrossRefGoogle Scholar
  5. 5.
    Arnoldussen, T.C., Tong, H.C.: IEEE Trans. Magn. 22, 889 (1986)ADSCrossRefGoogle Scholar
  6. 6.
    Tang, Y.S., Osse, L.: IEEE Trans. Magn. 23, 2371 (1987)ADSCrossRefGoogle Scholar
  7. 7.
    Ferrari, H., et al.: J. Magn. Magn. Mater. 313, 98 (2007)ADSCrossRefGoogle Scholar
  8. 8.
    Ferrari, H., et al.: Physica B 398, 476 (2007)ADSCrossRefGoogle Scholar
  9. 9.
    Freiser, M.J.: IBM J. Res. Develop 23, 330 (1979)CrossRefGoogle Scholar
  10. 10.
    Dvorak, V., Lajzerowicz, J.: J. Physique 47, 1785 (1986)CrossRefGoogle Scholar
  11. 11.
    Cerruti, B., Zapperi, S.: Phys. Rev. B 75, 064416 (2007)ADSCrossRefGoogle Scholar
  12. 12.
    Kittel, C.: Phys. Rev. 70, 965 (1946)ADSCrossRefGoogle Scholar
  13. 13.
    Kaplan, B., Kaplan, R.: J. Supercond. Nov. Magn. 29, 2987 (2016)CrossRefGoogle Scholar
  14. 14.
    Wu, Y. Z., et al.: Phys. Rev. Lett. 93, 117205 (2004)ADSCrossRefGoogle Scholar
  15. 15.
    Nakagawa, S., et al.: Journal de Physique, Colloque C8, Supplement au no 12, Tome 49 (1988)Google Scholar
  16. 16.
    Pramanik, T., et al.: J. Magn. Magn. Mater. 437, 72 (2017)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Department of Mathematics and Science EducationUniversity of MersinMersinTurkey

Personalised recommendations