Advertisement

Journal of Superconductivity and Novel Magnetism

, Volume 30, Issue 10, pp 2717–2725 | Cite as

Influence of the Substrate Layer on the Lightning Current Performance of YBa2Cu3O7−δ Tapes

  • D. Hu
  • J. W. ZhangEmail author
  • A. F. Zhao
  • Y. W. He
  • D. M. Xi
  • H. Huang
  • B. G. Wei
  • Z. Y. Li
  • Z. Hong
  • Z. Jin
Original Paper

Abstract

In a power grid, the superconducting power devices might also experience lightning impulse current except for the common over-currents. However, the study of the performance of YBCO tapes suffering a lightning current is scarcely reported. This paper mainly focuses on the influence of the substrate layer on the thermal stability of YBCO tapes suffering a lightning current. A numerical model which took into account both the thermal and the electromagnetic aspects was proposed. The validity of this model was verified by experiment. Based on this model, the influence of the dimension and material type of thesubstrate layer on the thermal stability were investigated in detail. The simulated results showed that the substrate layer could affect the temperature distribution on different layers, and stainless steel substrate layer is a more desired choice for decreasing the maximum temperature. Moreover, a theoretical explanation based on a simplified equivalent circuit was also used to study the influence of the substrate layer.

Keywords

Lightning current YBCO Numerical model Substrate layer Thermal stability 

Notes

Acknowledgements

This work was supported by National Natural Science Foundation of China (Project 51577119)

References

  1. 1.
    Kim, J.-H., et al.: Investigation of the over current characteristics of HTS tapes considering the application for HTS power devices. IEEE Trans. Appl. Supercond. 18(2), 1139–1142 (2008)ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    Lue, J.W., Gouge, M.J., Duckworth, R.C.: Over-current testing of HTS tapes. IEEE Trans. Appl. Supercond. 15(2), 1835–1838 (2005)CrossRefGoogle Scholar
  3. 3.
    Wang, X., Ishiyama, A., Ohya, M., Fujiwara, N.: Over-current characteristics of 66-kV RE123 HTS power cable. IEEE Trans. Appl. Supercond. 21(3), 1013–1016 (2013)ADSCrossRefGoogle Scholar
  4. 4.
    Sheng, J., Sun, H., Liu, X., Jin, Z., Hong, Z.: Performance degradation of YBa2cu3o7- δ tapes after suffering lightning impulse current. Appl. Phys. Lett. 112602, 104 (2014)Google Scholar
  5. 5.
    Hu, D., Mi, T.Z., He, Y., Li, Z.Y.: Experimental investigation of the influence of an encapsulation layer on the lightning current characteristics of YBCO tapes, J. Supercond. Nov. Magn., Published online: 18 January (2017)Google Scholar
  6. 6.
    Duron, J., Grilli, F., Dutoit, B., Stavrev, S.: Modeling the E–J relation of high-Tc superconductors in an arbitrary current range. Phys. C 41, 231–235 (2004)ADSCrossRefGoogle Scholar
  7. 7.
    Stavrev, S., et al.: Comparison of numerical methods for modeling of superconductors. IEEE Trans. Appl. Supercond. 38(2), 849–852 (2002)Google Scholar
  8. 8.
    Wang, Y., Chan, W.K., Schwartz, J.: Self-protection mechanisms in no-insulation (RE)Ba2Cu3Ox high temperature superconductor pancake coils. Supercond. Sci. Technol. 29, 045007 (2016). (11pp)ADSCrossRefGoogle Scholar
  9. 9.
    Dresner, L.: Stability of superconductors. Selected topics in superconductivity. Plenum Press, New-York (1995)Google Scholar
  10. 10.
    Jankowski, J.E.: Convective heat transfer model for determining quench recovery of high temperature superconducting YBCO in liquid nitrogen Loyola Marymount Univ (2002)Google Scholar
  11. 11.
    Casali, M., Breschi, M., Ribani, P.L.: Two-dimensional anisotropic model of YBCO coated conductors, vol. 25 (2015)Google Scholar
  12. 12.
    Yadroitsev, I., Yadroitsava, I.: Evaluation of residual stress in stainless steel 316L and Ti6Al4V samples produced by selective laser melting. Virtual Phys. Prototyping 10(2), 67–76 (2015)CrossRefGoogle Scholar
  13. 13.
    Toshio, H., Yuzuru, S., Yoshiro, S., Minoru, M.: Studies on thermal properties of some heat-resisting alloys for high temperature gas reactor. Bull. Res. Inst. Miner. Dressing Metall. Tohoku Univ. 36(2), 111–122 (1981)Google Scholar
  14. 14.
    Lu, J., Choi, E.S., Zhou, H.D.: Physical properties of Hastelloy C-276 at cryogenic temperatures. J. Appl. Phys. 103, 064908 (2008)ADSCrossRefGoogle Scholar
  15. 15.
    Matskevich, N.I., Stenin, Y.G.: Phase transition in YBa2cu3ox at 300–900 K: thermochemical and structural aspects. J. Struct. Chem. 44(eq2), 222–226 (2003)CrossRefGoogle Scholar
  16. 16.
    Touloukian, Y.S.: Thermal conductivity: metallic elements and alloys. IFI/Plenum (1970)Google Scholar
  17. 17.
    Ho, C.Y., Chu, T.K.: Electrical Resistivity and Thermal Conductivity of Nine Selected AISI Stainless Steels. American Iron and Steel Institute, Washington DC (1977)Google Scholar
  18. 18.
    Duron, J., et al.: Finite-element modelling of YBCO fault current limiter with temperature dependent parameters. Supercond. Sci. Technol. 20, 338–244 (2007)ADSCrossRefGoogle Scholar
  19. 19.
    Sundaram, A., et al.: 2G HTS wires made on 30 μm thick Hastelloy substrate. Supercond. Sci. Technol. 29, 104007 (2016). (6pp)ADSCrossRefGoogle Scholar
  20. 20.
    Lee, J.-H., et al.: Vision inspection methods for uniformity enhancement in long-length 2G HTS wire production. IEEE. Trans. Appl. Supercond. 24(5), 6900505 (2014)Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • D. Hu
    • 1
  • J. W. Zhang
    • 1
    Email author
  • A. F. Zhao
    • 1
  • Y. W. He
    • 1
  • D. M. Xi
    • 2
  • H. Huang
    • 3
  • B. G. Wei
    • 3
  • Z. Y. Li
    • 1
  • Z. Hong
    • 1
  • Z. Jin
    • 1
  1. 1.Department of Electrical EngineeringShanghai Jiao Tong UniversityShanghaiChina
  2. 2.Electric Power CollegeInner Mongolia University of TechnologyHohhotChina
  3. 3.Shanghai Municipal Electric Power Company EPRIShanghaiChina

Personalised recommendations