Skip to main content
Log in

Theory of d-Wave High Temperature Superconductivity in the Cuprates Involving Non-linear Lattice Modes

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

The transition mechanism in high temperature cuprate superconductors is an outstanding puzzle. A previous suggestion on the role of non-linear local lattice instability modes on the microscopic pairing mechanism in high temperature cuprate superconductors (Lee, J. Supercond. Nov. Magn. 23(3), 333; 2009) is re-examined to provide a viable mechanism for superconductivity in these cuprates via an unusual lattice vibration in which an electron is predominantly interacting with a non-linear Q 2 mode of the oxygen clusters in the CuO2 planes. It is shown that the interaction has explicit d-wave symmetry and leads to an indirect coupling of d-wave symmetry between electrons. As a follow-up of Lee (J. Supercond. Nov. Magn. 23(3), 333; 2009), in this paper, we report detailed derivation of the superconducting gap equation and numerical solutions for the transition temperature as inherently integrated into the so-called extended Hubbard model (EHM). A unique feature in the EHM is that the transition temperature has an inherent k-dependence. In addition, superconducting gap solutions are restrained to specific regions in the first Brillouin zone (1BZ). It is very feasible to expect that the EHM naturally inherits a huge parameter space in which experimentally measured results, such as the well-known superconducting dome and the phase diagram from electronic Raman scattering (Sacuto et al., Rep. Prog. Phys. 76(2), 022502; 2013) can be accommodated. The EHM model hence offers a viable venue to search for or confirm any signature in k-point-sensitive experimental measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lee, B.S.: J. Supercond. Nov. Magn. 23(3), 333 (2009). doi:10.1007/s10948-009-0536-z

    Article  Google Scholar 

  2. Sacuto, A., Gallais, Y., Cazayous, M., Méasson, M.A., Gu, G.D., Colson, D.: Rep. Prog. Phys. 76(2), 022502 (2013) http://stacks.iop.org/0034-4885/76/i=2/a=022502

    Article  ADS  Google Scholar 

  3. Bednorz, J.G., Muller, K.A.: Zeitschrift fur Physik B Condensed Matter 64(2), 189 (1986). doi:10.1007/bf01303701

    Article  ADS  Google Scholar 

  4. Norman, M.R., Pepin, C.: Rep. Prog. Phys. 66(10), 1547 (2003) http://stacks.iop.org/0034-4885/66/i=10/a=R01

    Article  ADS  Google Scholar 

  5. Lee, P.A.: Rep. Prog. Phys. 71(1), 012501 (2008) http://stacks.iop.org/0034-4885/71/i=1/a=012501

    Article  ADS  Google Scholar 

  6. Lee, B.S., Abd-Shukor, R.: J. Supercond. Nov. Magn. 25(4), 861 (2011). doi:10.1007/s10948-011-1369-0

    Article  Google Scholar 

  7. Lee, B.S., Yoon, T.L.: J. Supercond. Nov. Magn. 27(12), 2673 (2014). doi:10.1007/s10948-014-2753-3

    Article  Google Scholar 

  8. Lawler, M.J., Fujita, K., Lee, J., Schmidt, A.R., Kohsaka, Y., Kim, C.K., Eisaki, H., Uchida, S., Davis, J.C., Sethna, J.P., Kim, E.A.: Nature 466(7304), 347 (2010). doi:10.1038/nature09169

    Article  ADS  Google Scholar 

  9. Lee, B.S.: Physica C: Supercond. 160(2), 141 (1989). doi:10.1016/0921-4534(89)90183-4. http://www.sciencedirect.com/science/article/pii/0921453489901834

    Article  ADS  Google Scholar 

  10. Anderson, P.W.: Science 235(4793), 1196 (1987). doi:10.1126/science.235.4793.1196

    Article  ADS  Google Scholar 

  11. Ogata, M., Fukuyama, H.: Rep. Prog. Phys. 71(3), 036501 (2008) http://stacks.iop.org/0034-4885/71/i=3/a=036501

    Article  ADS  Google Scholar 

  12. Varma, C.M.: Rep. Prog. Phys. 79(8), 082501 (2016) http://stacks.iop.org/0034-4885/79/i=8/a=082501

    Article  ADS  Google Scholar 

  13. Lanzara, A., Bogdanov, P.V., Zhou, X.J., Kellar, S.A., Feng, D.L., Lu, E.D., Yoshida, T., Eisaki, H., Fujimori, A., Kishio, K., Shimoyama, J.I., Noda, T., Uchida, S., Hussain, Z., Shen, Z.X.: 6846. Nature 412, 510 (2001). doi:10.1038/35087518

    Article  ADS  Google Scholar 

  14. Kamimura, H., Ushio, H.: J. Supercond. Nov. Magn. 25(3), 677 (2012). doi:10.1007/s10948-012-1435-2

    Article  Google Scholar 

  15. Micnas, R., Ranninger, J., Robaszkiewicz, S.: Rev. Mod. Phys 62, 113 (1990). doi:10.1103/RevModPhys.62.113

    Article  ADS  Google Scholar 

  16. Mott, N.F., Alexandrov, A.S.: Polarons and Bipolarons (WORLD SCIENTIFIC PUB CO INC) (1996)

  17. Micnas, R., Ranninger, J., Robaszkiewicz, S., Tabor, S.: Phys. Rev. B 37, 9410 (1988). doi:10.1103/PhysRevB.37.9410

    Article  ADS  Google Scholar 

  18. Micnas, R., Tobijaszewska, B.: J. Phys.: Condens. Matter 14(41), 9631 (2002) http://stacks.iop.org/0953-8984/14/i=41/a=319

    ADS  Google Scholar 

  19. Kittel, C.: Quantum Theory of Solids (JOHN WILEY & SONS INC) (1987)

  20. Haken, H.: Quantum field theory of solids: an introduction (Elsevier Science Ltd) (1983). https://www.amazon.com/Quantum-Field-Theory-Solids-Introduction/dp/0444867376

Download references

Acknowledgments

This work was begun at UKM, and BSL thanks RAS for the hospitality. BSL acknowledges the financial support from the Ministry of Science, Technology and Innovation and Malaysian Academy of Science under the Brain Gain Program Malaysia (MOSTI/BGM/B2L/2/5063). YTL wishes to acknowledge the support of Universiti Sains Malaysia RU grant (grant number 1001/PFIZIK/811240). RAS thanks the Ministry of Higher Education of Malaysia for the support (grant number ERGS/1/2011/STG/UKM/01/25). All numerical works were exclusively conducted in USM by YTL. YTL gladfully acknowledges Dr. Chan Huah Yong from the School of Computer Science, USM, for providing us computing resources to carry out part of the calculations done in this paper. We thank Prof. R. Micnas for some initial discussions when the work was begun.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. L. Yoon.

Appendix

Appendix

1.1 A.1 Coefficients and Their Fourier Transforms of the Model Hamiltonian

The total Hamiltonian in real space H is as given in (1). The Hamiltonian H is transformed into the canonical form \(H^{\prime }\) via a standard displaced oscillator transformation as per (6). The primed terms \(H^{\prime }_{1}\) and \(H^{\prime }_{3}\) in (6) are as follows:

$$\begin{array}{@{}rcl@{}} H^{\prime}_{1}\!\!&=&\!\!\sum\limits_{i,j,\sigma} {t_{ij}c^{\dagger}_{i,\sigma} c_{j,\sigma}} \\ \!\!&\equiv&\!\! \sum\limits_{i,j,\sigma} {t^{\prime}_{ij}c^{\dagger}_{i,\sigma} c_{j,\sigma} }\exp \left\{\frac{1}{\sqrt{N}}\sum\limits_{{\mathbf{k}}}\frac{g\left( {\mathbf{k}}\right)}{\hslash {\omega}_{{\mathbf{k}}}}\left( a_{{\mathbf{k}},\sigma} \,-\,a^{\dagger}_{{\mathbf{-}}{\mathbf{k}}{\mathbf{,-}}\sigma} \right)\right.\\ &&\quad\quad\quad\quad\quad\quad\quad\quad\!\times\!\left.\left( e^{i{\mathbf{k}}{\mathbf{\cdot} }{{\mathbf{R}}}_{i}}\,-\,e^{i{\mathbf{k}}{\mathbf{\cdot} }{{\mathbf{R}}}_{j}}\right)\vphantom{\frac{1}{\sqrt{N}}\sum\limits_{{\mathbf{k}}}}\right\} , \\ H^{\prime}_{3}\!\!&=&\!\!-\frac{1}{2}\sum\limits_{\left\langle ij\right\rangle ,\sigma {,\sigma}^{\prime}}{V_{ij}n_{i,\sigma} n_{j{,\sigma}^{\prime}}} \\ \!\!&\equiv&\!\! -\frac{1}{N}\sum\limits_{i,j,\sigma {,\sigma} ^{\prime}}{\sum\limits_{{\mathbf{k}}}{\frac{g^{2}\left( {\mathbf{k}}\right)}{\hslash {\omega} _{{\mathbf{k}}}}e^{i{\mathbf{k}}\cdot \left( {{\mathbf{R}}}_{j}\boldsymbol{\!-}{{\mathbf{R}}}_{i}\right)}}c^{\dagger}_{i\sigma} c_{i\sigma} c^{\dagger}_{j{\sigma}^{\prime}}c_{j{\sigma}^{\prime}}}.\end{array} $$
(55)

Referring to \(H^{\prime }_{3}\) in (55), we identify

$$\begin{array}{@{}rcl@{}} V_{ij}=\frac{1}{N}\sum\limits_{{\mathbf{k}}}{\frac{g^{2}\left( {\mathbf{k}}\right)}{\hslash {\omega}_{{\mathbf{k}}}}e^{i{\mathbf{k}}\cdot \left( {{\mathbf{R}}}_{j}\boldsymbol{-}{{\mathbf{R}}}_{i}\right)}}.\end{array} $$
(56)

The coefficients in (6), namely t i j , V i j , c i,σ , \(c^{\dagger }_{i,\sigma }\) , and G i , are related to their Fourier counterparts via

$$\begin{array}{@{}rcl@{}} t_{ij}&=&\frac{1}{N}\sum\limits_{{\mathbf{k}}}{{\epsilon} _{{\mathbf{k}}}e^{i{\mathbf{k}}\cdot \left( {{\mathbf{R}}}_{j}-{{\mathbf{R}}}_{i}\right)}}, \\ V_{ij}&=&\frac{1}{N}\sum\limits_{{\mathbf{k}}}{V_{{\mathbf{k}}}e^{i{\mathbf{k}}\cdot \left( {{\mathbf{R}}}_{j}-{{\mathbf{R}}}_{i}\right)}}, \\ c_{i,\sigma} &=&\frac{1}{\sqrt{N}}\sum\limits_{{\mathbf{k}}}{c_{{\mathbf{k}},\sigma} e^{-i{\mathbf{k}}\cdot {{\mathbf{R}}}_{i}}}, \\ c^{\dagger}_{i,\sigma} &=&\frac{1}{\sqrt{N}}\sum\limits_{{\mathbf{k}}}{c^{\dagger}_{{\mathbf{k}},\sigma} e^{i{\mathbf{k}}\cdot {{\mathbf{R}}}_{i}}}, \\ G_{i}&=&\frac{1}{\sqrt{N}}\sum\limits_{{\mathbf{k}}}{G_{{\mathbf{k}}}e^{i{\mathbf{k}}\cdot {{\mathbf{R}}}_{i}}}.\end{array} $$
(57)

Comparing the expressions of V i j in (56) and (57),

$$\begin{array}{@{}rcl@{}} V_{ij}&=&\frac{1}{N}\sum\limits_{{\mathbf{k}}}{\frac{g^{2}\left( {\mathbf{k}}\right)}{\hslash {\omega}_{{\mathbf{k}}}}e^{i{\mathbf{k}}\cdot \left( {{\mathbf{R}}}_{j}\boldsymbol{-}{{\mathbf{R}}}_{i}\right)}}=\frac{1}{N}\sum\limits_{{\mathbf{k}}}{V_{{\mathbf{k}}}e^{i{\mathbf{k}}\cdot \left( {{\mathbf{R}}}_{j}\boldsymbol{-}{{\mathbf{R}}}_{i}\right)}} \\ \Rightarrow V_{{\mathbf{k}}}&=&\frac{g^{2}\left( {\mathbf{k}}\right)}{\hslash {\omega}_{{\mathbf{k}}}}.\end{array} $$
(58)

This explains how (24) is arrived at.

1.2 A.2 Derivation of (9) from (6)

Each term in (6) can be cast into Bloch representation with the aid of Fourier transformations from (57).

$$\begin{array}{@{}rcl@{}} H^{\prime}_{1}\!&=&\!\sum\limits_{i,j,\sigma} {t_{ij}c^{\dagger}_{i,\sigma} c_{j,\sigma} }\,=\,\frac{1}{N}\sum\limits_{\sigma} {\sum\limits_{i,j}{\sum\limits_{{\mathbf{k}}}{{\epsilon}_{{\mathbf{k}}}}e^{i{\mathbf{k}}\cdot \left( {{\mathbf{R}}}_{j}-{{\mathbf{R}}}_{i}\right)}c^{\dagger}_{i,\sigma} c_{j,\sigma} }} \\ \!&=&\!\sum\limits_{\sigma} \sum\limits_{{\mathbf{k}}}{{\epsilon}_{{\mathbf{k}}}}\left( \frac{1}{\sqrt{N}}\sum\limits_{i}{c^{\dagger}_{i,\sigma} e^{-i{\mathbf{k}}\cdot {{\mathbf{R}}}_{i}}}\right)\\ &&\times\left( \frac{1}{\sqrt{N}}\sum\limits_{j}{c_{j,\sigma} e^{i{\mathbf{k}}\cdot {{\mathbf{R}}}_{j}}}\right) \\ \!&=&\!\sum\limits_{{\mathbf{k}},\sigma} {{\epsilon}_{{\mathbf{k}}}}c^{\dagger}_{{\mathbf{k}},\sigma} c_{{\mathbf{k}},\sigma} .\ \end{array} $$
(59)
$$\begin{array}{@{}rcl@{}} H^{\prime}_{2} &=& U \sum\limits_{i,\sigma} n_{i,\sigma}n_{i,-\sigma} \\ &=& U \sum\limits_{\sigma} \left\{ \left( \frac{1}{\sqrt{N}}\sum\limits_{{\mathbf{k}}}{c^{\dagger} _{{\mathbf{k}},\sigma} e^{i{\mathbf{k}}\cdot {{\mathbf{R}}}_{i}}}\right)\left( \frac{1}{\sqrt{N}}\sum\limits_{{{\mathbf{k}}}^{\prime}}{c_{{{\mathbf{k}}}^{{\prime}},\sigma} e^{-i{{\mathbf{k}}}^{{\prime}}\cdot {{\mathbf{R}}}_{i}}}\right) \right. \\ &&\left. \left( \frac{1}{\sqrt{N}}\sum\limits_{{{\mathbf{k}}}^{\prime\prime}}{c^{\dagger} _{{\mathbf{k}},-\sigma} e^{i{{\mathbf{k}}}^{\prime\prime}\cdot {{\mathbf{R}}}_{i}}}\right)\left( \frac{1}{\sqrt{N}}\sum\limits_{{{\mathbf{k}}}^{\prime\prime\prime}}{c_{{{\mathbf{k}}}^{\prime\prime\prime},-\sigma} e^{-i{{\mathbf{k}}}^{\prime\prime\prime}\cdot {{\mathbf{R}}}_{i}}}\right) \right\} \\ &=&\ \frac{U}{N^{2}}\sum\limits_{\sigma} \left( \sum\limits_{{\mathbf{k}},{{\mathbf{k}}}^{{\prime}},{{\mathbf{k}}}^{\prime\prime}},{{\mathbf{k}}^{{\prime\prime\prime}}}{c^{\dagger} _{{\mathbf{k}},\sigma} c_{{{\mathbf{k}}}^{{\prime}},\sigma} }c^{\dagger} _{{{\mathbf{k}}}^{\prime\prime},-\sigma} c_{{{\mathbf{k}}}^{\prime\prime\prime},-\sigma} \right)\\ &&\times N\delta \left( {\mathbf{k}}-{{\mathbf{k}}}^{{\prime}}+{{\mathbf{k}}}^{\prime\prime}-{{\mathbf{k}}}^{\prime\prime\prime}\right) \\ &=&\frac{U}{N^{2}}\sum\limits_{\sigma ,{\mathbf{k}}{,{\mathbf{k}}}^{\prime},{\mathbf{q}}}{{c^{\dagger} _{{\mathbf{k}}+{\mathbf{q}},\sigma} c_{{\mathbf{k}},\sigma} c}^{\dagger} _{{{\mathbf{k}}}^{{\prime}}-{\mathbf{q}},-\sigma} c_{{{\mathbf{k}}}^{{\prime}},-\sigma} }.\end{array} $$
(60)
$$\begin{array}{@{}rcl@{}} H^{\prime}_{3}&=&-\frac{1}{2}\sum\limits_{\left\langle ij\right\rangle ,\sigma {,\sigma} ^{\prime}}{V_{ij}c^{\dagger}_{i,\sigma} c_{i,\sigma} c^{\dagger}_{j,{\sigma}^{\prime}}c_{j,{\sigma} ^{\prime}}} \\ &=& -\frac{1}{2}\sum\limits_{\sigma {,\sigma}^{\prime}}{\sum\limits_{\left\langle ij\right\rangle} {V_{ij}}} \left\{ \sum\limits_{{\mathbf{k}}}{\frac{1}{\sqrt{N}}c^{\dagger} _{{\mathbf{k}},\sigma} e^{i{\mathbf{k}}\cdot {{\mathbf{R}}}_{i}}}\right.\\ &&\times\left. \sum\limits_{{{\mathbf{k}}}^{{\prime}}}{\frac{1}{\sqrt{N}}c_{{{\mathbf{k}}}^{{\prime}},\sigma} e^{-i{{\mathbf{k}}}^{{\prime}} {{\mathbf{R}}}_{i}}} \cdot\sum\limits_{{{\mathbf{k}}}^{{\prime\prime}}}{\frac{1}{\sqrt{N}}c^{\dagger} _{{{\mathbf{k}}}^{{\prime\prime}},{\sigma} ^{\prime}}e^{i{{\mathbf{k}}}^{{\prime\prime}}\cdot {{\mathbf{R}}}_{j}}}\right.\\ &&\times\left.\sum\limits_{{{\mathbf{k}}}^{{\prime\prime\prime}}}\frac{1}{\sqrt{N}}c_{{{\mathbf{k}}}^{{\prime\prime\prime}},{\sigma} ^{\prime}}e^{-i{{\mathbf{k}}}^{{\prime\prime\prime}}\cdot {{\mathbf{R}}}_{j}} \right\} \\ &=& -\frac{1}{2N^{2}}\sum\limits_{\sigma {,\sigma}^{\prime}} \sum\limits_{{\mathbf{k}},{{\mathbf{k}}}^{{\prime}},{{\mathbf{k}}}^{{\prime\prime}}{{\mathbf{k}}}^{{\prime\prime\prime}}} \sum\limits_{\left\langle i,j\right\rangle} \sum\limits_{{\mathbf{q}}}\\ &&\times\left\{ \frac{1}{N} V_{{\mathbf{q}}}\times e^{i{\mathbf{q}}\cdot \left( {{\mathbf{R}}}_{j}-{{\mathbf{R}}}_{i}\right)} e^i\left( {\mathbf{k}}-{{\mathbf{k}}}^{{\prime}}\right)\right. \\ &&\left.\cdot {{\mathbf{R}}}_{i}e^{i\left( {{\mathbf{k}}}^{{\prime\prime}}-{{\mathbf{k}}}^{{\prime\prime\prime}}\right)\cdot {{\mathbf{R}}}_{j}} c^{\dagger}_{{\mathbf{k}},\sigma} c_{{{\mathbf{k}}}^{{\prime}},\sigma} c^{\dagger} _{{{\mathbf{k}}}^{{\prime\prime}},{\sigma}^{\prime}} c^{\dagger} _{{{\mathbf{k}}}^{{\prime\prime\prime}},{\sigma}^{\prime}} \vphantom{\frac{1}{N} V_{{\mathbf{q}}}}\right\} \\ &=&-\frac{1}{2N}\sum\limits_{\sigma {,\sigma} ^{\prime}}{\sum\limits_{{\mathbf{q}}}{\sum\limits_{{\mathbf{k}},{{\mathbf{k}}}^{{\prime}}}{V_{{\mathbf{q}}}}}c^{\dagger} _{{\mathbf{k}}+{\mathbf{q}},\sigma} c_{{\mathbf{k}},\sigma} c^{\dagger} _{{{\mathbf{k}}}^{{\prime}}-{\mathbf{q}},{\sigma}^{\prime}}c^{\dagger} _{{{\mathbf{k}}}^{{\prime}},{\sigma}^{\prime}}}. \end{array} $$
(61)
$$\begin{array}{@{}rcl@{}} H^{\prime}_{4}&=&-\sum\limits_{i,\sigma} {G_{i}c^{\dagger}_{i,\sigma} c_{i,\sigma} } \\ &=&-\sum\limits_{i,\sigma} \frac{1}{\sqrt{N}}\sum\limits_{{\mathbf{k}}}{G_{{\mathbf{k}}}e^{i{\mathbf{k}}\cdot {{\mathbf{R}}}_{i}}}\left( \sum\limits_{{{\mathbf{k}}}^{{\prime}}}{\frac{1}{\sqrt{N}}c^{\dagger} _{{{\mathbf{k}}}^{{\prime}},\sigma} e^{i{{\mathbf{k}}}^{{\prime}}\cdot {{\mathbf{R}}}_{i}}}\right)\\ &&\times\left( \sum\limits_{{{\mathbf{k}}}^{{\prime\prime}}}{\frac{1}{\sqrt{N}}c_{{{\mathbf{k}}}^{{\prime\prime}},\sigma} e^{-i{{\mathbf{k}}}^{{\prime\prime}}\cdot {{\mathbf{R}}}_{i}}}\right) \\ &=& -\frac{1}{\sqrt{N}}\sum\limits_{\sigma} {\sum\limits_{{\mathbf{q}},{\mathbf{k}}}{G_{{\mathbf{q}}}c^{\dagger}_{{\mathbf{k}}-{\mathbf{q}},\sigma} c_{{\mathbf{k}},\sigma} }}.\end{array} $$
(62)
$$\begin{array}{@{}rcl@{}} H^{\prime}_{5}\!&=&\!-\mu\! \sum\limits_{i,\sigma} {c^{\dagger}_{i,\sigma} c_{i,\sigma} }\mathrm{=}\,-\,\mu\! \sum\limits_{i,\sigma} \!\left( \!\sum\limits_{\mathbf{k}}\!\frac{1}{\sqrt{N}}c^{\dagger}_{{\mathbf{k}},\sigma} e^{i{\mathbf{k}}\cdot {{\mathbf{R}}}_{i}}\!\right)\\ &&\times\left( \sum\limits_{{{\mathbf{k}}}^{{\prime}}}{\frac{1}{\sqrt{N}}c_{{{\mathbf{k}}}^{{\prime}},\sigma} e^{-i{{\mathbf{k}}}^{{\prime}}\cdot {{\mathbf{R}}}_{i}}}\right) \\ &=& -\mu \sum\limits_{\sigma, {\mathbf{k}}}{c^{\dagger}_{{\mathbf{k}},\sigma} c_{{\mathbf{k}},\sigma} }. \end{array} $$
(63)

Adding up (59)–(63), \(H^{\prime }_{1}+H^{\prime }_{2}+H^{\prime }_{3}+H^{\prime }_{4}+H^{\prime }_{5}\) produces the Bloch representation model Hamiltonian, (9).

1.3 A.3 Diagonalization of Trial Hamiltonian of (10) into the Form (11)

The trial Hamiltonian of (10) is diagonalized by following a textbook approach, such as that discussed in p. 164 in [19]. To this end, we also require the anti-commutative relations for the operators \(c_{{\mathbf {k}},\sigma } ,c^{\dagger }_{{\mathbf {k}},\sigma } \). We write down the Heisenberg equation of motion for c k,σ in terms of the trial Hamiltonian of (10),

$$\begin{array}{@{}rcl@{}} i\frac{dc_{{\mathbf{k}},\sigma} }{dt}\equiv i{\dot{c}}_{{\mathbf{k}},\sigma} =\left[c_{{\mathbf{k}},\sigma} ,H_{t}\right].\end{array} $$
(64)

Expanding and simplifying the commutator in Eq. (64),

$$\begin{array}{@{}rcl@{}} \left[c_{{\mathbf{k}},\sigma} ,H_{t}\right]&\,=\,&\sum\limits_{{{\mathbf{k}}}^{\prime},{\sigma}^{\prime}}{\left( {\epsilon} _{{{\mathbf{k}}}^{\prime}}\,-\,\mu \,-\,A_{{{\mathbf{k}}}^{\prime}}\right)}\underbrace{\left( c_{{\mathbf{k}},\sigma} c^{\dagger} _{{{\mathbf{k}}}^{\prime},{\sigma} ^{\prime}}c_{{{\mathbf{k}}}^{\prime},{\sigma}^{\prime}}-c^{\dagger} _{{{\mathbf{k}}}^{{\prime}},{\sigma} ^{\prime}}c_{{{\mathbf{k}}}^{{\prime}},{\sigma} ^{\prime}}c_{{\mathbf{k}},\sigma} \right)}_{I} \\ &&-\frac{1}{2}\sum\limits_{{{\mathbf{k}}}^{\prime},{\sigma}^{\prime}} \left[ B_{{{\mathbf{k}}}^{\prime}}\underbrace{\left( {c^{\dagger} _{{{\mathbf{k}}}^{\prime},{\sigma}^{\prime}}c^{\dagger} _{-{{\mathbf{k}}}^{\prime},-{\sigma}^{\prime}}c_{{\mathbf{k}},\sigma} \,-\,c}_{{\mathbf{k}},\sigma} c^{\dagger}_{{{\mathbf{k}}}^{\prime},{\sigma} ^{\prime}}c^{\dagger}_{-{{\mathbf{k}}}^{\prime},-{\sigma}^{\prime}}\right)}_{II} \right. \\ && \left. +B^{*}_{{{\mathbf{k}}}^{{\prime}}}\underbrace{\left( {c_{-{{\mathbf{k}}}^{{\prime}},-{\sigma} ^{\prime}}c_{{{\mathbf{k}}}^{{\prime}},{\sigma} ^{\prime}}c_{{\mathbf{k}},\sigma} \,-\,c}_{{\mathbf{k}},\sigma} c_{-{{\mathbf{k}}}^{{\prime}},-{\sigma} ^{\prime}}c_{{{\mathbf{k}}}^{{\prime}},{\sigma}^{\prime}}\right)}_{III} \right]\!. \end{array} $$
(65)

We now look at the I, II, and III terms in (65) in turn. The term I in (65) can be simplified to

$$\begin{array}{@{}rcl@{}} I=\delta \left( {\mathbf{k}}-{{\mathbf{k}}}^{\prime}\right){\delta}_{\sigma ,{\sigma}^{\prime}}c_{{{\mathbf{k}}}^{\prime},{\sigma}^{\prime}}\end{array} $$

by using the following anti-commutative relations

$$\begin{array}{@{}rcl@{}} \left\{c_{{\mathbf{k}},\sigma} ,c_{{{\mathbf{k}}}^{{\prime}},{\sigma} ^{\prime}}\right\}=0;\ \left\{c_{{\mathbf{k}},\sigma} ,c^{\dagger} _{{{\mathbf{k}}}^{{\prime}},{\sigma}^{\prime}}\right\}=\delta \left( {\mathbf{k}}-{{\mathbf{k}}}^{\prime}\right){\delta}_{\sigma ,{\sigma} ^{\prime}}.\end{array} $$
(66)

The term II in (65) can be simplified to

$$\begin{array}{@{}rcl@{}} II=\delta \left( {\mathbf{k}}+{{\mathbf{k}}}^{\prime}\right){\delta} _{\sigma ,-{\sigma}^{\prime}}c^{\dagger}_{{{\mathbf{k}}}^{\prime},\sigma} -\delta \left( {\mathbf{k}}-{{\mathbf{k}}}^{\prime}\right){\delta}_{\sigma ,{\sigma} ^{\prime}}c^{\dagger}_{-{{\mathbf{k}}}^{\prime},-{\sigma}^{\prime}}\end{array} $$

by using the following anti-commutative relation

$$\begin{array}{@{}rcl@{}}c^{\dagger}_{{-{\mathbf{k}}}^{{\prime}},-{\sigma}^{\prime}}c_{{\mathbf{k}},\sigma} =\delta \left( {\mathbf{k}}+{{\mathbf{k}}}^{\prime}\right){\delta}_{\sigma ,-{\sigma}^{\prime}}-c_{{\mathbf{k}},\sigma} c^{\dagger}_{-{{\mathbf{k}}}^{{\prime}},-{\sigma}^{\prime}}.\end{array} $$
(67)

The term III in (65) can be simplified to

$$\begin{array}{@{}rcl@{}} III={c_{{\mathbf{k}},\sigma} c_{-{{\mathbf{k}}}^{{\prime}},-{\sigma} ^{\prime}}c_{{{\mathbf{k}}}^{{\prime}},\sigma} -c}_{{\mathbf{k}},\sigma} c_{-{{\mathbf{k}}}^{{\prime}},-{\sigma} ^{\prime}}c_{{{\mathbf{k}}}^{{\prime}},{\sigma}^{\prime}}\end{array} $$

by using the following anti-commutative relation,

$$\begin{array}{@{}rcl@{}} \left\{c_{{\mathbf{k}},\sigma} ,c_{-{{\mathbf{k}}}^{{\prime}},-{\sigma}^{\prime}}\right\}=0.\end{array} $$
(68)

Putting I, II, and III into (65),

$$\begin{array}{@{}rcl@{}} i{\dot{c}}_{{\mathbf{k}},\sigma} \!\!&=&\!\sum\limits_{{{\mathbf{k}}}^{\prime},{\sigma} ^{\prime}}{\left( {\epsilon}_{{{\mathbf{k}}}^{\prime}}-\mu -A_{{{\mathbf{k}}}^{\prime}}\right)}{\delta \left( {\mathbf{k}}-{{\mathbf{k}}}^{\prime}\right){\delta}_{\sigma ,{\sigma} ^{\prime}}c_{{{\mathbf{k}}}^{\prime},{\sigma}^{\prime}}}_{I} \\ &&-\frac{1}{2}\sum\limits_{{{\mathbf{k}}}^{\prime},{\sigma} ^{\prime}}{B_{{{\mathbf{k}}}^{\prime}}\left[\delta \left( {\mathbf{k}}+{{\mathbf{k}}}^{\prime}\right){\delta}_{\sigma ,-{\sigma} ^{\prime}}c^{\dagger}_{{{\mathbf{k}}}^{\prime},\sigma} \,-\,\delta \left( {\mathbf{k}}-{{\mathbf{k}}}^{\prime}\right){\delta}_{\sigma ,{\sigma} ^{\prime}}c^{\dagger}_{-{{\mathbf{k}}}^{\prime},-{\sigma}^{\prime}}\right]} \\&=& E_{{\mathbf{k}}}c_{{\mathbf{k}},\sigma} +{\frac{1}{2}B}_{{\mathbf{k}}}c^{\dagger} _{-{\mathbf{k}}{\mathbf{,-}}\sigma} .\end{array} $$
(69)

Similarly,

$$\begin{array}{@{}rcl@{}} i{\dot{c}}^{\dagger}_{{\mathbf{k}},\sigma}={-E}_{{\mathbf{k}}}c^{\dagger}_{{\mathbf{k}},\sigma} -\frac{1}{2}B_{{\mathbf{k}}}c_{-{\mathbf{k}},-\sigma} .\end{array} $$
(70)

In deriving (69) and (70), we have defined

$$\begin{array}{@{}rcl@{}} E_{{\mathbf{k}}}\equiv {\epsilon}_{{\mathbf{k}}}-\mu -A_{{\mathbf{k}}},\end{array} $$
(71)

and assumed

$$\begin{array}{@{}rcl@{}} B_{{\mathbf{k}}}&=&B^{*}_{{\mathbf{k}}}\ \left( \mathrm{i.e.,} B_{{\mathbf{k}}}\mathrm{a\ real\ number}\right); \\ E_{{\mathbf{k}}}&=&E_{-{\mathbf{k}}},B_{{\mathbf{k}}}=B_{-{\mathbf{k}}}.\end{array} $$
(72)

For the next step, we shall perform Bogolyubov-Valatin transformation (see e.g., p. 307 of Haken, [20]) on \(c^{\dagger }_{-{\mathbf {k}}{\mathbf {,-}}\sigma } ,c_{{\mathbf {-}}{\mathbf {k}}{\mathbf {,-}}\sigma } ,c_{{\mathbf {k}},\sigma } {,c}^{\dagger }_{{\mathbf {k}},\sigma } \) to obtain

$$\begin{array}{@{}rcl@{}} {\alpha}^{\dagger}_{{\mathbf{k}},\sigma}=u_{{\mathbf{k}}}c^{\dagger} _{{\mathbf{k}},\sigma} -v_{{\mathbf{k}}}c_{-{\mathbf{k}}{\mathbf{,-}}\sigma} ,\end{array} $$
$$\begin{array}{@{}rcl@{}} {\alpha}_{{\mathbf{k}},\sigma} =u_{{\mathbf{k}}}c_{{\mathbf{k}},\sigma} -v_{{\mathbf{k}}}c^{\dagger}_{-{\mathbf{k}}{\mathbf{,-}}\sigma} ,\end{array} $$
$$\begin{array}{@{}rcl@{}} {\alpha}_{-{\mathbf{k}}{\mathbf{,-}}\sigma} =u_{{\mathbf{k}}}v_{{\mathbf{k}}}c_{-{\mathbf{k}}{\mathbf{,-}}\sigma} +v_{{\mathbf{k}}}c^{\dagger}_{{\mathbf{k}},\sigma} ,\end{array} $$
$$\begin{array}{@{}rcl@{}}{\alpha}^{\dagger}_{-{\mathbf{k}}{\mathbf{,-}}\sigma} =u_{{\mathbf{k}}}c^{\dagger}_{-{\mathbf{k}}{\mathbf{,-}}\sigma} +v_{{\mathbf{k}}}c_{{\mathbf{k}},\sigma} ,\end{array} $$
(73)

with the condition \(u^{2}_{{\mathbf {k}}}+v^{2}_{{\mathbf {k}}}=1\) and u k ,v k are real numbers. In addition, we shall also assume

$$\begin{array}{@{}rcl@{}} u_{-{\mathbf{k}}}=u_{{\mathbf{k}}},v_{-{\mathbf{k}}}=v_{{\mathbf{k}}}.\end{array} $$
(74)

Unless otherwise specify, as a short-hand notation, we shall suppress the spin subscript in the c k ,c k , and \({\alpha }^{\dagger } _{{\mathbf {k}}},{\alpha }_{{\mathbf {k}}}\) operators with the understanding that they are implicitly σ-bearing, i.e.,

$$\begin{array}{@{}rcl@{}} {\alpha}^{\dagger}_{{\mathbf{k}}}\equiv {\alpha}^{\dagger}_{{\mathbf{k}},\sigma};{\alpha}_{{\mathbf{k}}}\equiv {\alpha}_{{\mathbf{k}},\sigma} ;{{\alpha} _{{\mathbf{-}}{\mathbf{k}}}\equiv \alpha} _{{\mathbf{-}}{\mathbf{k}}{\mathbf{,-}}\sigma} ;{\alpha}^{\dagger} _{-{\mathbf{k}}}\equiv {\alpha}^{\dagger}_{-{\mathbf{k}}{\mathbf{,-}}\sigma} ;\end{array} $$
$$\begin{array}{@{}rcl@{}} c^{\dagger}_{{\mathbf{k}}}\!\equiv \!c^{\dagger}_{{\mathbf{k}},\sigma} ;\ c_{{\mathbf{-}}{\mathbf{k}}}\!\equiv \!c_{-{\mathbf{k}}{\mathbf{,-}}\sigma} ;c_{-{\mathbf{k}}}\!\equiv \!c_{-{\mathbf{k}}{\mathbf{,-}}\sigma};c^{\dagger}_{-{\mathbf{k}}}\!\equiv \!c^{\dagger}_{-{\mathbf{k}}{\mathbf{,-}}\sigma .}\end{array} $$
(75)

The operators in (75) fulfill the following anti-commutative relations:

$$\begin{array}{@{}rcl@{}} \left\{{\alpha}_{{\mathbf{k}}},{\alpha}^{\dagger} _{{{\mathbf{k}}}^{{\prime}}}\right\}={\delta} _{{{\mathbf{k}},{\mathbf{k}}}^{\prime}}{\delta}_{\sigma ,{\sigma}^{\prime}};\ \left\{{\alpha}_{{\mathbf{k}}},{\alpha}_{{{\mathbf{k}}}^{{\prime}}}\right\}=0;\ \left\{{\alpha}^{\dagger}_{{\mathbf{k}}},{\alpha}^{\dagger} _{{{\mathbf{k}}}^{{\prime}}}\right\}=0.\end{array} $$
(76)

Inverting (76) we have

$$\begin{array}{@{}rcl@{}} c_{{\mathbf{k}}}=u_{{\mathbf{k}}}{\alpha} _{{\mathbf{k}}}+v_{{\mathbf{k}}}{\alpha}^{\dagger}_{-{\mathbf{k}}},\end{array} $$
$$\begin{array}{@{}rcl@{}} c^{\dagger}_{{\mathbf{k}}}=u_{{\mathbf{k}}}{\alpha}^{\dagger} _{{\mathbf{k}}}+v_{{\mathbf{k}}}{\alpha}_{-{\mathbf{k}}},\end{array} $$
$$\begin{array}{@{}rcl@{}} c_{-{\mathbf{k}}}=u_{{\mathbf{k}}}{\alpha} _{-{\mathbf{k}}}-v_{{\mathbf{k}}}{\alpha}^{\dagger}_{{\mathbf{k}}},\end{array} $$
$$\begin{array}{@{}rcl@{}}c^{\dagger}_{-{\mathbf{k}}}=u_{{\mathbf{k}}}{\alpha}^{\dagger}_{-{\mathbf{k}}}-v_{{\mathbf{k}}}{\alpha}_{{\mathbf{k}}}.\end{array} $$
(77)

Insert (77) into the trial Hamiltonian H t of (10),

$$\begin{array}{@{}rcl@{}} H_{t}&=&\underbrace{\sum\limits_{{\mathbf{k}},\sigma} {{\alpha}^{\dagger} _{{\mathbf{k}}}{\alpha} _{{\mathbf{k}}}\left( u^{2}_{{\mathbf{k}}}E_{{\mathbf{k}}}-\frac{1}{2}u_{{\mathbf{k}}}v_{{\mathbf{k}}}B_{{\mathbf{k}}}-\frac{1}{2}u_{{\mathbf{k}}}v_{{\mathbf{k}}}B^{*}_{{\mathbf{k}}}\right)}}_{H_{t,I}} \\ && +\underbrace{\sum\limits_{{\mathbf{k}},\sigma} {{{\alpha}_{-{\mathbf{k}}}\alpha} ^{\dagger} _{-{\mathbf{k}}}\left( v^{2}_{{\mathbf{k}}}E_{{\mathbf{k}}}+\frac{1}{2}u_{{\mathbf{k}}}v_{{\mathbf{k}}}B_{{\mathbf{k}}}+\frac{1}{2}u_{{\mathbf{k}}}v_{{\mathbf{k}}}B^{*}_{{\mathbf{k}}}\right)}}_{H_{t,II}} \\ && +\underbrace{\sum\limits_{{\mathbf{k}},\sigma} {{\alpha}^{\dagger} _{{\mathbf{k}}}{\alpha}^{\dagger} _{-{\mathbf{k}}}\left( {u_{{\mathbf{k}}}v_{{\mathbf{k}}}E}_{{\mathbf{k}}}+ \frac{1}{2}u^{2}_{{\mathbf{k}}}B_{{\mathbf{k}}}-\frac{1}{2}v^{2}_{{\mathbf{k}}}B^{*}_{{\mathbf{k}}}\right)}}_{H_{t,III}} \\ && +\underbrace{\sum\limits_{{\mathbf{k}},\sigma} {{\alpha}_{-{\mathbf{k}}}{\alpha} _{{\mathbf{k}}}\left( {u_{{\mathbf{k}}}v_{{\mathbf{k}}}E}_{{\mathbf{k}}}+\frac{1}{2}u^{2}_{{\mathbf{k}}}B^{*}_{{\mathbf{k}}}-\frac{1}{2}v^{2}_{{\mathbf{k}}}B_{{\mathbf{k}}}\right)}}_{H_{t,IV}} \end{array} $$
(78)

If H t were diagonal in the \(\left \{{{\alpha }^{\dagger }_{{\mathbf {k}}},\alpha } _{{\mathbf {k}}}\right \}\) representation, it can be expressed in the form

$$\begin{array}{@{}rcl@{}} H_{t}=\sum\limits_{{\mathbf{k}},\sigma} {{\lambda}_{{\mathbf{k}}}{{\alpha}^{\dagger} _{{\mathbf{k}}}\alpha}_{{\mathbf{k}}}}+\text{constant},\end{array} $$
(79)

where λ k the eigenvalue of H t . The constant term, which does not contain any α operator, can be neglected when applying variation calculation on H t . The equations of motion for α k and \({\ \alpha }^{\dagger }_{{\mathbf {k}}}\) are respectively given by

$$\begin{array}{@{}rcl@{}} i\frac{d{\alpha}^{\dagger}_{{\mathbf{k}}}}{dt}&=&\left[{\alpha}^{\dagger} _{{\mathbf{k}}},H_{t}\right]=-{\lambda}_{{\mathbf{k}}}{\alpha}^{\dagger} _{{\mathbf{k}}}, \\ i\frac{d{\alpha}_{{\mathbf{k}}}}{dt}&=&\left[{\alpha} _{{\mathbf{k}}},H_{t}\right]={\lambda}_{{\mathbf{k}}}{\alpha} _{{\mathbf{k}}}.\end{array} $$
(80)

Putting H t in (78) together with α k‡ in a commutator yields

$$\begin{array}{@{}rcl@{}} \left[{\alpha}^{\dagger}_{{\mathbf{k}}},H_{t}\right]=\left[{\alpha}^{\dagger} _{{\mathbf{k}}},H_{t,I}\right]+\left[{\alpha}^{\dagger} _{{\mathbf{k}}},H_{t,II}\right].\end{array} $$
(81)

The terms \(\left [{\alpha }^{\dagger } _{{\mathbf {k}}},H_{t,III}\right ]\ \text {and} \left [{\alpha }^{\dagger } _{{\mathbf {k}}},H_{t,IV}\right ]\) that should otherwise appear in the RHS of (81) vanish due to the following anti-commutative relations:

$$\begin{array}{@{}rcl@{}} \left\{{\alpha}^{\dagger}_{{\mathbf{k}}}{,\alpha}^{\dagger} _{{{\mathbf{k}}}^{{\prime}}}\right\}&=&0; \ \left\{{\alpha} _{{{\mathbf{k}}}^{\prime}},{\alpha}^{\dagger}_{{\mathbf{k}}}\right\}=\delta \left( {\mathbf{k}}{\mathbf{-}}{\mathbf{k}}{\prime}\right){\delta} _{\sigma ,{\sigma}^{\prime}}; \\ \left\{{\alpha}_{-{{\mathbf{k}}}^{\prime}},{\alpha}^{\dagger} _{{\mathbf{k}}}\right\}&=&\delta \left( {\mathbf{k}}{\mathbf{+}}{\mathbf{k}}{\prime}\right){\delta} _{\sigma ,{-\sigma}^{\prime}}. \end{array} $$

Using the following results,

$$\begin{array}{@{}rcl@{}} \left[{\alpha}^{\dagger}_{{\mathbf{k}}},{\alpha}_{{{\mathbf{-}}{\mathbf{k}}}^{{\prime}}}{\alpha}^{\dagger}_{{-{\mathbf{k}}}^{{\prime}}}\right]&=&{{{\delta}_{{{\mathbf{k}}{\mathbf{,-}}{\mathbf{k}}}^{\prime}}\delta}_{\sigma ,-{\sigma}^{\prime}}\alpha}^{\dagger}_{{\mathbf{-}}{{\mathbf{k}}}^{{\prime}}}; \\ \left[{\alpha}^{\dagger}_{{\mathbf{k}}},{\alpha}^{\dagger} _{{{\mathbf{k}}}^{{\prime}}}{\alpha}^{\dagger} _{{{\mathbf{k}}}^{{\prime}}}\right] &=& -{{\delta} _{{{\mathbf{k}},{\mathbf{k}}}^{\prime}}\delta}_{\sigma ,{\sigma}^{\prime}}{\alpha} ^{\dagger}_{{{\mathbf{k}}}^{{\prime}}},\end{array} $$
(82)

the commutators in the RHS of (81) are reduced to

$$\begin{array}{@{}rcl@{}} \left[{\alpha}^{\dagger} _{{\mathbf{k}}},H_{t,I}\right]=-\left( u^{2}_{{\mathbf{k}}}E_{{\mathbf{k}}}-u_{{\mathbf{k}}}v_{{\mathbf{k}}}B_{{\mathbf{k}}}\right){\alpha} ^{\dagger}_{{\mathbf{k}}}\end{array} $$
(83)

and

$$\begin{array}{@{}rcl@{}} \left[{\alpha}^{\dagger}_{{\mathbf{k}}},H_{t,II}\right]={\alpha}^{\dagger} _{{\mathbf{k}}}\left( v^{2}_{{\mathbf{k}}}E_{{\mathbf{k}}}+u_{{\mathbf{k}}}v_{{\mathbf{k}}}B_{{\mathbf{k}}}\right).\end{array} $$
(84)

By (81), (83), and (84), the commutator \(\left [{\alpha }^{\dagger } _{{\mathbf {k}}},H_{t}\right ]\) in (80) becomes

$$\begin{array}{@{}rcl@{}} \left[{\alpha}^{\dagger} _{{\mathbf{k}}},H_{t}\right]=-\left[\left( u^{2}_{{\mathbf{k}}}-v^{2}_{{\mathbf{k}}}\right)E_{{\mathbf{k}}}-2u_{{\mathbf{k}}}v_{{\mathbf{k}}}B_{{\mathbf{k}}}\right]{\alpha} ^{\dagger}_{{\mathbf{k}}}.\end{array} $$
(85)

Comparing (80) and (85), the eigenvalue λ k is identified, namely,

$$\begin{array}{@{}rcl@{}} {\lambda} _{{\mathbf{k}}}\mathrm{=}\left( u^{2}_{{\mathbf{k}}}-v^{2}_{{\mathbf{k}}}\right)E_{{\mathbf{k}}}-2u_{{\mathbf{k}}}v_{{\mathbf{k}}}B_{{\mathbf{k}}}.\end{array} $$
(86)

We next look at \(u^{2}_{{\mathbf {k}}},v^{2}_{{\mathbf {k}}}\) in (86). Upon diagonalization, the coefficients for the off-diagonal terms of H t in (78) (i.e., H t,I I I , H t,I V ), which involve \({\alpha }^{\dagger }_{{\mathbf {k}}}{\alpha }^{\dagger } _{{-}{\mathbf {k}}},\ {\alpha }_{-{\mathbf {k}}}{\alpha } _{{\mathbf {k}}}\), should vanish, i.e.,

$$\begin{array}{@{}rcl@{}} {u_{{\mathbf{k}}}v_{{\mathbf{k}}}E}_{{\mathbf{k}}}+\frac{1}{2}\left( u^{2}_{{\mathbf{k}}}-v^{2}_{{\mathbf{k}}}\right)B_{{\mathbf{k}}}=0.\end{array} $$
(87)

Since \(u^{2}_{{\mathbf {k}}}+v^{2}_{{\mathbf {k}}}=1\), we parametrise

$$\begin{array}{@{}rcl@{}} u_{{\mathbf{k}}}={\text{cos} \frac{{\theta}_{{\mathbf{k}}}}{2}} ,\ v_{{\mathbf{k}}}={\sin \frac{{\theta}_{{\mathbf{k}}}}{2}} .\end{array} $$
(88)

It is also assumed that the parameter 𝜃 k = 𝜃 k so that (88) is consistent with (74). The will cast (87) into

$$\begin{array}{@{}rcl@{}} {{\text{cos} \frac{{\theta}_{{\mathbf{k}}}}{2}} {\sin \frac{{\theta} _{{\mathbf{k}}}}{2}} E}_{{\mathbf{k}}}+\frac{1}{2}\!\left( {{\text{cos}}^{2} \frac{{\theta} _{{\mathbf{k}}}}{2}} -{{\sin}^{2} \frac{{\theta}_{{\mathbf{k}}}}{2}} \right)B_{{\mathbf{k}}}&=&0 \\ \Rightarrow {\tan {\theta}_{{\mathbf{k}}}} &=&-\frac{B_{{\mathbf{k}}}}{E_{{\mathbf{k}}}}.\end{array} $$
(89)

Hence, from (87), (88), and (89), the eigenvalue λ k in (86) is now simplified to

$$\begin{array}{@{}rcl@{}} {\lambda}_{{\mathbf{k}}}={\text{cos} {\theta}_{{\mathbf{k}}}} E_{{\mathbf{k}}}-{\sin {\theta}_{{\mathbf{k}}}} B_{{\mathbf{k}}}=\sqrt{E^{2}_{{\mathbf{k}}}+B^{2}_{{\mathbf{k}}}}.\end{array} $$
(90)

This completes the derivation of (12). We note that the result (90) does not have four branches as obtained in [17] because no charge-ordered states are considered in the present model. The term H t,I I in (78) can be cast into the form

$$\begin{array}{@{}rcl@{}} H_{t,II}&=&\sum\limits_{{\mathbf{k}},\sigma} {{{\alpha}_{-{\mathbf{k}}}\alpha}^{\dagger} _{-{\mathbf{k}}}\left( v^{2}_{{\mathbf{k}}}E_{{\mathbf{k}}}+u_{{\mathbf{k}}}v_{{\mathbf{k}}}B_{{\mathbf{k}}}\right)} \\ &=& \sum\limits_{{\mathbf{k}},\sigma} {{\alpha}^{\dagger}_{{\mathbf{k}}}{\alpha} _{{\mathbf{k}}}\left( v^{2}_{{\mathbf{k}}}E_{{\mathbf{k}}}+u_{{\mathbf{k}}}v_{{\mathbf{k}}}B_{{\mathbf{k}}}\right)}+\underbrace{\sum\limits_{{\mathbf{k}},\sigma} {v^{2}_{{\mathbf{k}}}E_{{\mathbf{k}}}+u_{{\mathbf{k}}}v_{{\mathbf{k}}}B_{{\mathbf{k}}}}}_{\text{constant}}\ \end{array} $$
(91)

where we have used the relation \({{\alpha }_{-{\mathbf {k}}}\alpha }^{\dagger } _{-{\mathbf {k}}}=1-{\alpha }^{\dagger }_{-{\mathbf {k}}}{\alpha }_{-{\mathbf {k}}}\) and replaced −kk. The constant term in (91) is evaluated by summing over the spin degree of freedom,

$$\begin{array}{@{}rcl@{}} \text{constant} \!&=&\!\sum\limits_{{\mathbf{k}},\sigma} {\left( v^{2}_{{\mathbf{k}}}E_{{\mathbf{k}}}+u_{{\mathbf{k}}}v_{{\mathbf{k}}}B_{{\mathbf{k}}}\right)} \\ &=&\! \sum\limits_{{\mathbf{k}},\sigma}{\left( \frac{E_{{\mathbf{k}}}}{2}-\frac{1}{2}{\lambda} _{{\mathbf{k}}}\right)\,=\,\sum\limits_{{\mathbf{k}}}{E_{{\mathbf{k}}}}\,-\,\sum\limits_{{\mathbf{k}}}{{\lambda} _{{\mathbf{k}}}}}\equiv C.\end{array} $$
(92)

In arriving at (92), the following identities, which can be derived from (88) and (89), have been used, namely,

$$\begin{array}{@{}rcl@{}} u_{{\mathbf{k}}}v_{{\mathbf{k}}}&=&-\frac{1}{2}\frac{B_{{\mathbf{k}}}}{\sqrt{B^{2}_{{\mathbf{k}}}+E^{2}_{{\mathbf{k}}}}}, \\ v^{2}_{{\mathbf{k}}}&=&\frac{1}{2}-\frac{1}{2}\frac{E_{{\mathbf{k}}}}{\sqrt{B^{2}_{{\mathbf{k}}}+E^{2}_{{\mathbf{k}}}}}, \\ {u^{2}_{{\mathbf{k}}}-v}^{2}_{{\mathbf{k}}}&=&\frac{E_{{\mathbf{k}}}}{\sqrt{B^{2}_{{\mathbf{k}}}+E^{2}_{{\mathbf{k}}}}}.\end{array} $$
(93)

Be noted that the expression for the constant in (92), \(C={\sum }_{{\mathbf {k}}}{E_{{\mathbf {k}}}}-{\sum }_{{\mathbf {k}}}{{\lambda } _{{\mathbf {k}}}}\), is defined with summation over the variable k only. Upon diagonalization, H t,I I I , H t,I V in H t in (78) vanish. Combining H t,I I (from (91)) with H t,I in (78) gives (11),

$$\begin{array}{@{}rcl@{}} H_{t}=\sum\limits_{{\mathbf{k}},\sigma} {{\lambda}_{{\mathbf{k}}}{\alpha}^{\dagger} _{{\mathbf{k}}}{\alpha}_{{\mathbf{k}}}}+C.\end{array} $$
(94)

This completes the diagonalization of the trial Hamiltonian.

1.4 A.4 Derivation of \({{F}}_{{t}},\ {\left \langle {H}\right \rangle }_{{t}},{\left \langle {{H}}_{{t}}\right \rangle }_{{t}}\) as Appear in (15)

Derivation of F t :

Partition function Z t for trial Hamiltonian H t is defined as

$$\begin{array}{@{}rcl@{}} Z_{t}&=&\text{Tr}\ e^{-\beta H_{t}}\mathrm{=}e^{-\beta C}\mathrm{\cdot} \text{Tr}\ {\mathrm{e}}^{-\beta \left( \sum\limits_{{\mathbf{k}},\sigma} {{\lambda}_{{\mathbf{k}}}{\alpha}^{\dagger} _{{\mathbf{k}}}{\alpha}_{{\mathbf{k}}}}\right)} \\ &=& e^{-\beta C}\mathrm{\cdot} \prod\limits_{{\mathbf{k}},\sigma} {\left[2{\mathrm{e}}^{-\frac{\beta {\lambda} _{{\mathbf{k}}}}{2}}\cdot \frac{1}{2}\left( {\mathrm{e}}^{\frac{\beta {\lambda} _{{\mathbf{k}}}}{2}}+{\mathrm{e}}^{-\frac{\beta {\lambda}_{{\mathbf{k}}}}{2}}\right)\right]} \\ &=& e^{-\beta C}\mathrm{\cdot} \prod\limits_{{\mathbf{k}},\sigma} {2{\mathrm{e}}^{-\frac{\beta {\lambda}_{{\mathbf{k}}}}{2}}{\cosh \left( \frac{\beta {\lambda} _{{\mathbf{k}}}}{2}\right)} },\end{array} $$
(95)

where the constant C is as defined in (92). The trial free energy is

$$\begin{array}{@{}rcl@{}} F_{t}&=&-k_{B}T{\ln Z_{t}} =C-k_{B}T{\ln \left\{\prod\limits_{{\mathbf{k}},\sigma} {\left[{\mathrm{e}}^{-\frac{\beta {\lambda}_{{\mathbf{k}}}}{2}}\cdot 2{\cosh \left( \frac{\beta {\lambda}_{{\mathbf{k}}}}{2}\right)} \right]}\right\}} \\ &=&-k_{B}T\sum\limits_{{\mathbf{k}},\sigma} {\left( -\frac{\beta {\lambda} _{{\mathbf{k}}}}{2}\right)}-\frac{1}{\beta} \sum\limits_{{\mathbf{k}},\sigma} {{\ln \left[\mathrm{2cosh}\left( \frac{\beta {\lambda}_{{\mathbf{k}}}}{2}\right)\right]} }+C \\ &=&\frac{1}{2}\sum\limits_{{\mathbf{k}},\sigma} {{\lambda}_{{\mathbf{k}}}}-\frac{1}{\beta} \sum\limits_{{\mathbf{k}},\sigma} {{\ln \left[\mathrm{2cosh}\left( \frac{\beta {\lambda} _{{\mathbf{k}}}}{2}\right)\right]} }+\left( \sum\limits_{{\mathbf{k}}}{E_{{\mathbf{k}}}}-\sum\limits_{{\mathbf{k}}}{{\lambda} _{{\mathbf{k}}}}\right) \\ &=& \sum\limits_{{\mathbf{k}}}{{\lambda} _{{\mathbf{k}}}}-\frac{1}{\beta} \sum\limits_{{\mathbf{k}},\sigma} {{\ln \left[\mathrm{2cosh}\left( \frac{\beta {\lambda}_{{\mathbf{k}}}}{2}\right)\right]} }+\sum\limits_{{\mathbf{k}}}{E_{{\mathbf{k}}}}-\sum\limits_{{\mathbf{k}}}{{\lambda} _{{\mathbf{k}}}} \\ &=& -\frac{1}{\beta} \sum\limits_{{\mathbf{k}},\sigma} {{\ln \left[\mathrm{2cosh}\left( \frac{\beta {\lambda}_{{\mathbf{k}}}}{2}\right)\right]} }+\sum\limits_{{\mathbf{k}}}{{(\epsilon}_{{\mathbf{k}}}-\mu -A_{{\mathbf{k}}})}.\end{array} $$
(96)

Derivation of \({\left \langle \boldsymbol {H}\right \rangle }_{\boldsymbol {t}}\):

The derivation \({\left \langle H\right \rangle }_{t}\) proceeds by beginning with the definition of the model Hamiltonian H, (9), which is separated into three parts,

$$\begin{array}{@{}rcl@{}} {\left\langle H\right\rangle}_{t}={\left\langle h_{1}\right\rangle}_{t}+{\left\langle h_{2}\right\rangle} _{t}+{\left\langle h_{3}\right\rangle}_{t},\end{array} $$
$$\begin{array}{@{}rcl@{}} h_{1}&=&\sum\limits_{{\mathbf{k}},\sigma} {\left( {\epsilon}_{\mathrm{k}}-\mu \right)c^{\dagger} _{{\mathbf{k}},\sigma} c_{{\mathbf{k}},\sigma} }, \\ h_{2}&=&-\frac{1}{2N}\sum\limits_{\sigma ,{\sigma} ^{\prime}}{\sum\limits_{{\mathbf{k}},{{\mathbf{k}}}^{\prime},{\mathbf{q}}}{\left( V_{{\mathbf{q}}}-{2U\delta} _{\sigma ,{-\sigma}^{\prime}}\right)c^{\dagger}_{{\mathbf{k}}+{\mathbf{q}},\sigma} c_{{\mathbf{k}},\sigma} }c^{\dagger} _{{{\mathbf{k}}}^{\prime}-{\mathbf{q}},{\sigma} ^{\prime}}c_{{{\mathbf{k}}}^{\prime},{\sigma}^{\prime}}}, \\ h_{3}&=&-\frac{1}{\sqrt{N}}\sum\limits_{\sigma} {\sum\limits_{{\mathbf{k}},{\mathbf{q}}}{G_{{\mathbf{q}}}c^{\dagger} _{{\mathbf{k}}-{\mathbf{q}},\sigma} c_{{\mathbf{k}},\sigma} }}.\end{array} $$
(97)

In terms of the operators \({\alpha }_{{\mathbf {k}},\sigma } ,\ {\alpha }^{\dagger }_{{\mathbf {k}},\sigma } \), \({\left \langle h_{1}\right \rangle }_{t}\) reads

$$\begin{array}{@{}rcl@{}} {\left\langle h_{1}\right\rangle}_{t}\!&=&\!\!{\left\langle \sum\limits_{{\mathbf{k}},\sigma} {\left( {\epsilon}_{{\mathbf{k}}}\,-\,\mu \right)\left( u_{{\mathbf{k}}}{\alpha}^{\dagger} _{{\mathbf{k}},\sigma} +v_{{\mathbf{k}}}{\alpha}_{-{\mathbf{k}},-\sigma} \right)\left( u_{{\mathbf{k}}}{\alpha}_{{\mathbf{k}},\sigma} \,+\,v_{{\mathbf{k}}}{\alpha} ^{\dagger}_{-{\mathbf{k}},-\sigma} \right)}\right\rangle}_{t} \\ &=&\!\! {\left\langle \sum\limits_{{\mathbf{k}},\sigma}{\kern-.5pt} {\left( {\epsilon}_{{\mathbf{k}}}\,-\,\mu \right){}\left[u^{2}_{{\mathbf{k}}}{\alpha}^{\dagger}_{{\mathbf{k}},\sigma} {\alpha} _{{\mathbf{k}},\sigma} \!+v^{2}_{{\mathbf{k}}}{}\left( {}1\!-{\!\alpha}^{\dagger} _{{\mathbf{-}}{\mathbf{k}},-\sigma} {\alpha} _{{\mathbf{-}}{\mathbf{k}},-\sigma} {}\right){}\right]}\right\rangle}_{t}.\end{array} $$
(98)

The expectation values \({\left \langle {\alpha }^{\dagger }_{{\mathbf {k}},\sigma } {\alpha }^{\dagger } _{{\mathbf {-}}{\mathbf {k}},-\sigma } \right \rangle }_{t},\ {\left \langle {\alpha } _{{\mathbf {-}}{\mathbf {k}},-\sigma } {\alpha } _{{\mathbf {-}}{\mathbf {k}},-\sigma } \right \rangle }_{t}\) in (98) vanish in representation in which \({\alpha }^{\dagger }_{{\mathbf {k}},\sigma } {,\alpha } _{{\mathbf {k}},\sigma } \) are diagonal. There are two expectation values left to be evaluated in (98), i.e., \({\left \langle {\alpha }^{\dagger }_{{\mathbf {k}},\sigma } {\alpha } _{{\mathbf {k}},\sigma } \right \rangle }_{t}\) and \({\left \langle {\alpha }^{\dagger } _{{\mathbf {-}}{\mathbf {k}},-\sigma } {\alpha } _{{\mathbf {-}}{\mathbf {k}},-\sigma } \right \rangle }_{t}\). \({\left \langle {\alpha } _{{\mathbf {k}},\sigma } {\alpha }^{\dagger }_{{\mathbf {k}},\sigma } \right \rangle }_{t}\) is evaluated via

$$\begin{array}{@{}rcl@{}} {\left\langle {\alpha}^{\dagger}_{{\mathbf{k}},\sigma} {\alpha} _{{\mathbf{k}},\sigma} \right\rangle}_{t}&=&\frac{\text{Tr}\ \left( {\alpha}^{\dagger} _{{\mathbf{k}},\sigma} {\alpha}_{{\mathbf{k}},\sigma} \right)e^{-\beta H_{t}}}{\text{Tr}\ \left( e^{-\beta H_{t}}\right)} \\ &=&-\frac{\partial} {\partial \left( \beta {\lambda} _{{\mathbf{k}}}\right)}{\ln Z_{t}} =\frac{1}{2}-\frac{1}{2}{\tanh \left( \frac{\beta {\lambda}_{{\mathbf{k}}}}{2}\right)} .\end{array} $$
(99)

In arriving at A 45, we have ignored the contribution from constant term C in H t of A 41.

The subscripts in \({\left \langle {\alpha }^{\dagger }_{{\mathbf {-}}{\mathbf {k}},-\sigma } {\alpha } _{{\mathbf {-}}{\mathbf {k}},-\sigma } \right \rangle }_{t}\) can be manipulated so that it can be expressed in terms of \({\left \langle {{\alpha }^{\dagger }_{{\mathbf {k}},\sigma } \alpha } _{{\mathbf {k}},\sigma } \right \rangle }_{t}\),

$$\begin{array}{@{}rcl@{}} &&-\sum\limits_{{\mathbf{k}},\sigma} {\left( {\epsilon}_{{\mathbf{k}}}-\mu \right)v^{2}_{{\mathbf{k}}}{\left\langle {\alpha}^{\dagger} _{{-}{\mathbf{k}}{,-}\sigma} {\alpha} _{{-}{\mathbf{k}}{,-}\sigma} \right\rangle} _{t}}\\&=&-\sum\limits_{{\mathbf{k}},\sigma} {\left( {\epsilon}_{{\mathbf{k}}}-\mu \right)v^{2}_{{\mathbf{k}},\sigma} {\left\langle {\alpha}^{\dagger}_{{\mathbf{k}},\sigma} {\alpha}_{{\mathbf{k}},\sigma} \right\rangle}_{t}},\end{array} $$
(100)

where we have made use of 𝜖 k = 𝜖 k . Using (93), (99), and (100), the square bracket term in (98) can be simplified to

$$\begin{array}{@{}rcl@{}} \left[\cdots \right]\,=\,\left( u^{2}_{{\mathbf{k}}}\,-\,v^{2}_{{\mathbf{k}}}\right){\!\left\langle {\alpha}^{\dagger} _{{\mathbf{k}},\sigma} {\alpha}^{\dagger}_{{\mathbf{k}},\sigma} \right\rangle} _{t}\,+\,v^{2}_{{\mathbf{k}}}\,=\,\frac{1}{2}\,-\,\frac{E_{{\mathbf{k}}}}{2{\lambda} _{{\mathbf{k}}}} {\tanh \left( \frac{\beta {\lambda}_{{\mathbf{k}}}}{2}\right)} .\end{array} $$
(101)
$$\begin{array}{@{}rcl@{}} \Rightarrow {\left\langle h_{1}\right\rangle}_{t}=\frac{1}{2}\sum\limits_{{\mathbf{k}},\sigma} {\left( {\epsilon}_{{\mathbf{k}}}-\mu \right)\left[1-\frac{E_{{\mathbf{k}}}}{{\lambda} _{{\mathbf{k}}}} {\tanh \left( \frac{\beta {\lambda}_{{\mathbf{k}}}}{2}\right)} \right]}. \end{array} $$
(102)

To evaluate \({\left \langle h_{2}\right \rangle }_{t}\), we rearrange \({\left \langle c^{\dagger } _{{\mathbf {k}}+{\mathbf {q}},\sigma } c_{{\mathbf {k}},\sigma } c^{\dagger } _{{{\mathbf {k}}}^{\prime }-{\mathbf {q}}{,\sigma } ^{\prime }}c_{{{\mathbf {k}}}^{\prime },{\sigma }^{\prime }}\right \rangle }_{t}\) by reverting the position of the c operator twice and using anti-commutative relations for c k‡,c k to arrive at

$$\begin{array}{@{}rcl@{}} {\left\langle c^{\dagger}_{{\mathbf{k}}+{\mathbf{q}},\sigma} c_{{\mathbf{k}},\sigma} c^{\dagger} _{{{\mathbf{k}}}^{\prime}-{\mathbf{q}}{,\sigma} ^{\prime}}c_{{{\mathbf{k}}}^{\prime},{\sigma}^{\prime}}\right\rangle}_{t}\!&=&{\!-\left\langle c^{\dagger}_{{\mathbf{k}}+{\mathbf{q}},\sigma} {c^{\dagger} _{{{\mathbf{k}}}^{\prime}-{\mathbf{q}}{,\sigma} ^{\prime}}c}_{{\mathbf{k}},\sigma} c_{{{\mathbf{k}}}^{\prime},{\sigma} ^{\prime}}\right\rangle}_{t} \\ &=&{\!\left\langle c^{\dagger} _{{\mathbf{k}}+{\mathbf{q}},\sigma} {c^{\dagger} _{{{\mathbf{k}}}^{\prime}-{\mathbf{q}}{,\sigma} ^{\prime}}c_{{{\mathbf{k}}}^{\prime},{\sigma}^{\prime}}c}_{{\mathbf{k}},\sigma} \right\rangle}_{t}.\end{array} $$
(103)

In view of (103), h 2 reads (after a few manipulative steps in the subscript symbols)

$$\begin{array}{@{}rcl@{}} h_{2}\,=\,-\frac{1}{2N}\!\!\sum\limits_{\sigma} {\!\sum\limits_{{\mathbf{k}},{\mathbf{q}}}{\!\left( \!V_{{\mathbf{q}}\boldsymbol{-}{\mathbf{k}}}\!\,-\,2U\right){\!\left\langle \!c^{\dagger}_{{\mathbf{q}},\sigma} {c^{\dagger} _{\mathrm{-}{\mathbf{q}}{\mathbf{,-}}\sigma} c_{\mathrm{-}{\mathbf{k}} ,-\sigma} c}_{{\mathbf{k}},\sigma} \!\right\rangle}_{\!t}}}.\\ \end{array} $$
(104)

It can be shown that \({\left \langle c^{\dagger }_{{\mathbf {q}},\sigma } {c^{\dagger } _{\mathrm {-}{\mathbf {q}}{\mathbf {,-}}\sigma } c_{\mathrm {-}{\mathbf {k}},-\sigma } c}_{{\mathbf {k}},\sigma } \right \rangle }_{t}={\left \langle c^{\dagger } _{{\mathbf {q}},\sigma } c^{\dagger }_{\mathrm {-}{\mathbf {q}}{\mathbf {,-}}\sigma } \right \rangle }_{t}{\left \langle {c_{\mathrm {-}{\mathbf {k}},-\sigma } c}_{{\mathbf {k}},\sigma } \right \rangle }_{t}\) provided qk, or equivalently, V 0 is excluded in the summation in (104). \({\left \langle c^{\dagger }_{{\mathbf {q}},\sigma } c^{\dagger } _{\mathrm {-}{\mathbf {q}}{\mathbf {,-}}\sigma } \right \rangle }_{t}\) is given by the following expression (after some algebra, and making use of (93), (99), (100), and (105)),

$$\begin{array}{@{}rcl@{}} {\left\langle c^{\dagger}_{{\mathbf{q}},\sigma} c^{\dagger} _{\mathrm{-}{\mathbf{q}}{\mathbf{,-}}\sigma} \right\rangle} _{t}\!&=&\!u_{{\mathbf{q}}}v_{{\mathbf{q}}}\left( 1\,-\,{\left\langle {{\alpha}^{\dagger} _{{\mathbf{-}}{\mathbf{q}},-\sigma} \alpha} _{{\mathbf{-}}{\mathbf{q}},-\sigma} \right\rangle}_{t}\,-\,{\left\langle {\alpha}^{\dagger} _{{\mathbf{q}},\sigma} {\alpha}_{{\mathbf{q}},\sigma} \!\right\rangle}_{\!t}\right) \\ &=&\!-\frac{1}{2}\frac{B_{{\mathbf{q}}}}{{\lambda}_{{\mathbf{q}}}}{\tanh \left( \frac{\beta {\lambda}_{{\mathbf{q}}}}{2}\right)} \end{array} $$
(105)

As for the derivation of (105), we can similarly obtain

$$\begin{array}{@{}rcl@{}} {\left\langle {c_{\mathrm{-}{\mathbf{k}},-\sigma} c}_{{\mathbf{k}},\sigma} \right\rangle}_{t}=-\frac{1}{2}\frac{B_{{\mathbf{k}}}}{{\lambda}_{{\mathbf{k}}}}{\tanh \left( \frac{\beta {\lambda}_{{\mathbf{k}}}}{2}\right)} . \end{array} $$
(106)

Using (105) and (106), the expectation value of \({\left \langle h_{2}\right \rangle }_{t}\) is now obtained,

$$\begin{array}{@{}rcl@{}} {\left\langle h_{2}\right\rangle}_{t}\,=\,-\frac{1}{8N}\!\sum\limits_{\sigma ,{\mathbf{k}}}{\!\sum\limits_{{\mathbf{q}}}{\left( V_{{\mathbf{q}}\boldsymbol{-}\mathrm{k}}\,-\,2U\right)\!\frac{B_{{\mathbf{q}}}B_{{\mathbf{k}}}}{{\lambda}_{{\mathbf{q}}}{\lambda}_{{\mathbf{k}}}}{\mathrm{tanh\!} \left( \frac{\beta {\lambda}_{{\mathbf{q}}}}{2}\right)} {\mathrm{tanh\!} \left( \frac{\beta {\lambda}_{{\mathbf{k}}}}{2}\right)} }}. \\ \end{array} $$
(107)

The G q term that enters \({\left \langle h_{3}\right \rangle }_{t}\) has d-wave symmetry and is physically significant pertaining to the pseudo-gap [1]. However, as \({\left \langle h_{3}\right \rangle }_{t}\) does not contribute to the process of minimization of F v with respect to B k for deriving superconducting gap equation, we leave it as it is without explicitly evaluating it. It is relabeled as \({\left \langle G\ \text {term}\right \rangle }_{t}\),

$$\begin{array}{@{}rcl@{}} {\left\langle h_{3}\right\rangle}_{t}\equiv {\left\langle G\ \text{term}\right\rangle} _{t}. \end{array} $$
(108)

Putting the final expression of \({\left \langle h_{1}\right \rangle }_{t},{\left \langle h_{2}\right \rangle }_{t}\), and \({\left \langle h_{3}\right \rangle }_{t}\) together,

$$\begin{array}{@{}rcl@{}} {\left\langle H\right\rangle}_{t}\!&=&\!\!\sum\limits_{{\mathbf{k}},\sigma} {\left( {\epsilon} _{{\mathbf{k}}}-\mu \right){\left\langle c^{\dagger}_{{\mathbf{k}},\sigma} c_{{\mathbf{k}},\sigma} \right\rangle}_{t}} \\ && -\frac{1}{8N}\sum\limits_{\sigma ,{\mathbf{k}}}{\sum\limits_{{\mathbf{q}}}{\left( V_{{\mathbf{q}}-\mathrm{k}}\,-\,2U\right)\!\frac{B_{{\mathbf{q}}}B_{{\mathbf{k}}}}{{\lambda} _{{\mathbf{q}}}{\lambda}_{{\mathbf{k}}}}{\mathrm{tanh\!} \left( \frac{\beta {\lambda} _{{\mathbf{q}}}}{2}\right)} {\mathrm{tanh\!} \left( \frac{\beta {\lambda} _{{\mathbf{k}}}}{2}\right)} }} \\ && +{\left\langle G\ \text{term}\right\rangle} _{t}\end{array} $$
(109)

Derivation of \({\left \langle {\boldsymbol {H}}_{\boldsymbol {t}}\right \rangle }_{\boldsymbol {t}}\):

Referring to (64),

$$\begin{array}{@{}rcl@{}} {\left\langle H_{t}\right\rangle}_{t}\!\!&=&\!\sum\limits_{{\mathbf{k}},\sigma} {\left( {\epsilon} _{{\mathbf{k}}}-\mu -A_{{\mathbf{k}}}\right){\left\langle c^{\dagger} _{{\mathbf{k}},\sigma} c_{{\mathbf{k}},\sigma} \right\rangle}_{t}} \\ && \!+ \frac{1}{2}\sum\limits_{{\mathbf{k}},\sigma} \!\left( B_{{\mathbf{k}}}{\left\langle \!c^{\dagger} _{{\mathbf{k}},\sigma} c^{\dagger}_{-{\mathbf{k}},-\sigma} \!\right\rangle}_{t} \,+\,B^{*}_{{\mathbf{k}}}{\left\langle c_{-{\mathbf{k}},-\sigma} c_{{\mathbf{k}},\sigma} \right\rangle}_{t}\right) \!.\end{array} $$
(110)

Using (72), (105), and (106), we have

$$\begin{array}{@{}rcl@{}} {\left\langle H_{t}\right\rangle}_{t}&=&\sum\limits_{{\mathbf{k}},\sigma} {\left( {\epsilon} _{{\mathbf{k}}}-\mu -A_{{\mathbf{k}}}\right){\left\langle c^{\dagger} _{{\mathbf{k}},\sigma} c_{{\mathbf{k}},\sigma} \right\rangle} _{t}}\\&&-\frac{1}{2}\sum\limits_{{\mathbf{k}},\sigma} {\frac{B^{2}_{{\mathbf{k}}}}{{\lambda} _{{\mathbf{k}}}}{\tanh \left( \frac{\beta {\lambda}_{{\mathbf{k}}}}{2}\right).} }\end{array} $$
(111)

This completes the derivation of \({\left \langle H_{t}\right \rangle }_{t}.\)

Derivation of F v :

Finally, putting everything together, i.e., (96) (for F t ), (109) (for \({\left \langle H\right \rangle }_{t}\)) (111) (for \({\left \langle H_{t}\right \rangle }_{t}\)), the variational free energy is written as

$$\begin{array}{@{}rcl@{}} F_{v}\!\!&=&F_{t}+{\left\langle H\right\rangle}_{t}-{\left\langle H_{t}\right\rangle}_{t}+\mu N_{e} \\ &=& \underbrace{-\frac{1}{\beta} \sum\limits_{{\mathbf{k}},\sigma} {{\ln \left[\mathrm{2cosh}\left( \frac{\beta {\lambda}_{{\mathbf{k}}}}{2}\right)\right]} }}_{F_{v,I}} \\ && \underbrace{-\frac{1}{8N}\sum\limits_{\sigma ,{\mathbf{k}}}{\sum\limits_{{\mathbf{q}}}{\left( V_{{\mathbf{q}}\boldsymbol{-}\mathrm{k}}-2U\right)\frac{B_{{\mathbf{q}}}B_{{\mathbf{k}}}}{{\lambda} _{{\mathbf{q}}}{\lambda}_{{\mathbf{k}}}}{\tanh \left( \frac{\beta {\lambda} _{{\mathbf{q}}}}{2}\right)} {\tanh \left( \frac{\beta {\lambda} _{{\mathbf{k}}}}{2}\right)} }}}_{F_{v,II}} \\ &&+\underbrace{\frac{1}{2}\sum\limits_{{\mathbf{k}},\sigma} {\frac{B^{2}_{{\mathbf{k}}}}{{\lambda} _{{\mathbf{k}}}}{\tanh \left( \frac{\beta {\lambda}_{{\mathbf{k}}}}{2}\right)} }}_{F_{v,III}} \\ && {+\underbrace{{\left\langle G\ \text{term}\right\rangle} _{t}\,+\,\sum\limits_{{\mathbf{k}}}{{\epsilon}_{{\mathbf{k}}}}+\mu N\left( 1-n\right)\,+\,\sum\limits_{{\mathbf{k}},\sigma} {A_{{\mathbf{k\!}}}\left( {\left\langle c^{\dagger} _{{\mathbf{k}},\sigma} c_{{\mathbf{k}},\sigma} \!\right\rangle} _{t}\,-\,\frac{1}{2}\right)}}}_{\mathrm{independent~of}~{\mathrm{B}}_{{\mathbf{k}}}}. \\ \end{array} $$
(112)

Note that the last three terms in (112) are independent of B k . Also, we have used the relation N e = N n, where n denotes concentration of charge carries, defined as

$$\begin{array}{@{}rcl@{}} n\equiv \frac{1}{N}\sum\limits_{{\mathbf{k}},\sigma} {n_{{\mathbf{k}},\sigma} }=\frac{1}{N}\sum\limits_{{\mathbf{k}},\sigma} {{\left\langle c^{\dagger}_{{\mathbf{k}},\sigma} c_{{\mathbf{k}},\sigma} \right\rangle}_{t}}.\end{array} $$
(113)

From (102), we can identify \(n_{{\mathbf {k}},\sigma } \equiv {\left \langle c^{\dagger }_{{\mathbf {k}},\sigma } c_{{\mathbf {k}},\sigma } \right \rangle }_{t}\) in terms of the variables E k and λ k , namely,

$$\begin{array}{@{}rcl@{}} n_{{\mathbf{k}},\sigma} \mathrm{=}\frac{1}{2}\left[1-\frac{E_{{\mathbf{k}}}}{{\lambda}_{{\mathbf{k}}}} {\tanh \left( \frac{\beta {\lambda}_{{\mathbf{k}}}}{2}\right)\ }\right].\end{array} $$
(114)

In view of (113) and (114), we have

$$\begin{array}{@{}rcl@{}} nN=\sum\limits_{{\mathbf{k}},\sigma} {{\left\langle c^{\dagger}_{{\mathbf{k}},\sigma} c_{{\mathbf{k}},\sigma} \right\rangle} _{t}}=N-\sum\limits_{{\mathbf{k}}}{\frac{E_{{\mathbf{k}}}}{{\lambda}_{{\mathbf{k}}}} {\tanh \left( \frac{\beta {\lambda}_{{\mathbf{k}}}}{2}\right)}}.\end{array} $$
(115)

Note that in the RHS of (115), the spin degree of freedom has already been summed over.

1.5 A.5 Minimization of F v with Respect to B k to Derive the Recurrent Gap Equation

F v in (112) can be minimized term by term. Differentiating the first term in F v by making use of the relation

$$\begin{array}{@{}rcl@{}} \frac{\partial {\lambda}_{{\mathbf{k}}}}{\partial B_{{\mathbf{k}}}}=\frac{B_{{\mathbf{k}}}}{{\lambda}_{{\mathbf{k}}}},\end{array} $$
(116)

we obtain

$$\begin{array}{@{}rcl@{}} \frac{\partial F_{v,I}}{\partial B_{{\mathbf{k}}}}=-\frac{1}{2}\sum\limits_{{\mathbf{k}},\sigma} {B_{{\mathbf{k}}}T_{{\mathbf{k}}}},\end{array} $$
(117)

where

$$\begin{array}{@{}rcl@{}} T_{{\mathbf{k}}}\equiv \frac{\tanh\left( \frac{\beta {\lambda} _{{\mathbf{k}}}}{2}\right)}{{\lambda}_{{\mathbf{k}}}}.\end{array} $$
(118)

Differentiating the second term in F v results in

$$\begin{array}{@{}rcl@{}} \frac{\partial F_{v,II}}{\partial B_{{\mathbf{k}}}}\,=\,-\frac{1}{8N}\!\sum\limits_{{\mathbf{k}},\sigma} {\!\sum\limits_{{\mathbf{q}}}{\left( V_{{\mathbf{q}}-{\mathbf{k}}}\,-\,2U\right)\!B_{{\mathbf{q}}}{\mathrm{T}}_{{\mathbf{q}}}\!\left[{\mathrm{\!T}}_{{\mathbf{k}}}\,+\,B_{{\mathbf{k}}}\frac{\partial {\mathrm{T}}_{{\mathbf{k}}}}{\partial B_{{\mathbf{k}}}}\right]}}.\end{array} $$
(119)

Differentiating the third term in F v results in

$$\begin{array}{@{}rcl@{}} \frac{\partial F_{v,III}}{\partial B_{{\mathbf{k}}}}=\sum\limits_{{\mathbf{k}},\sigma} {B_{{\mathbf{k}}}\left( {\mathrm{T}}_{{\mathbf{k}}}+\frac{1}{2}B_{{\mathbf{k}}}\frac{\partial {\mathrm{T}}_{{\mathbf{k}}}}{\partial B_{{\mathbf{k}}}}\right)}. \end{array} $$
(120)

Putting (117), (118), (119), and (120) together into (112),

$$\begin{array}{@{}rcl@{}} \frac{\partial F_{v}}{\partial B_{{\mathbf{k}}}}&=&\left[\sum\limits_{{\mathbf{k}},\sigma} {\frac{1}{2}B_{{\mathbf{k}}}}-\frac{1}{8N}\sum\limits_{{\mathbf{k}},\sigma} {\sum\limits_{{\mathbf{q}}}{\left( V_{{\mathbf{q}}{\mathbf{-}}{\mathbf{k}}}-2U\right)B_{{\mathbf{q}}}{\mathrm{T}}_{{\mathbf{q}}}}}\right]\\&&\times\left( {\mathrm{T}}_{{\mathbf{k}}}+B_{{\mathbf{k}}}\frac{\partial {\mathrm{T}}_{{\mathbf{k}}}}{\partial B_{{\mathbf{k}}}}\right)=0 \\ \Rightarrow B_{{\mathbf{k}}}&=&\frac{1}{4N}\sum\limits_{{\mathbf{q}}}{\left( V_{{\mathbf{k}}{\mathbf{-}}{\mathbf{q}}}-2U\right)B_{{\mathbf{q}}}\frac{\tanh\left( \frac{\beta {\lambda}_{{\mathbf{k}}}}{2}\right)}{{\lambda}_{{\mathbf{k}}}}.}\end{array} $$
(121)

1.6 A.6 Derivation of (53) and (54)

In linear algebra, a homogeneous system of (47) has infinitely many non-trivial solutions if the determinant vanishes, or equivalently, the matrix M in (47) is a rank 1 matrix. The non-trivial solutions \(\left (\begin {array}{c} {{\Delta } }_{0} \\ {{\Delta } }_{\eta } \end {array} \right )\) has only one linearly independent arbitrary variable, which we will choose as Δ0. Δ η is parametrized in terms of Δ0 via \(r_{\eta } =\frac {{{\Delta } }_{\eta } }{{{\Delta } }_{0}}\). If the root for \(D_{{\mathbf {k}}}\left (\beta \right )=\left |M\right |=T_{1}T_{2{\mathbf {k}}}+T_{3}T_{4{\mathbf {k}}}\ =0\) [i.e., (49)] exists, the matrix M is reduced into row-reduced echelon form (which is always possible because it is a rank 1 matrix with vanishing determinant),

$$\begin{array}{@{}rcl@{}}M\sim\left( \begin{array}{cc} 1 & \frac{T_{3}}{T_{1}} \\ 0 & 0 \end{array} \right). \end{array} $$
(122)

Thus,

$$\begin{array}{@{}rcl@{}}\left( \! \begin{array}{cc} 1 & \frac{T_{3}}{T_{1}} \\ 0 & 0 \end{array} \!\right)\!\left( \! \begin{array}{c} {{\Delta} }_{0} \\ {{\Delta} }_{\eta} \end{array} \!\right)\,=\,\left( \!\begin{array}{c} 0 \\ 0 \end{array} \!\right)\!\Rightarrow\! r_{\eta} \,=\,\frac{{{\Delta}}_{\eta} }{{{\Delta} }_{0}}\,=\,-\frac{T_{1}}{T_{3}}\,=\,-\frac{1+2U{\sum}_{{\mathbf{q}}}{F_{{\mathbf{q}}}}}{2U{\sum}_{{\mathbf{q}}}{{\eta} _{{\mathbf{q}}}F_{{\mathbf{q}}}}}.\end{array} $$
(123)

The numerical value of the gap Δ k at k-point k is given as per

$$\begin{array}{@{}rcl@{}}{{\Delta} }_{{\mathbf{k}}}={{\Delta} }_{0}+{{\Delta}}_{\eta} {\eta}_{{\mathbf{k}}}={{\Delta} }_{0}\left( 1+r_{\eta} {\eta}_{{\mathbf{k}}}\right).\end{array} $$
(124)

This completes the derivation of (53) and (54).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, B.S., Yoon, T.L. & Abd-Shukor, R. Theory of d-Wave High Temperature Superconductivity in the Cuprates Involving Non-linear Lattice Modes. J Supercond Nov Magn 30, 3377–3395 (2017). https://doi.org/10.1007/s10948-017-4087-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-017-4087-4

Keywords

Navigation