Advertisement

Journal of Superconductivity and Novel Magnetism

, Volume 30, Issue 9, pp 2591–2596 | Cite as

Structural and Magnetic Study of Undoped and Cu-Doped Rutile TiO2 Single Crystals

  • N. N. Xu
  • G. P. LiEmail author
  • Q. L. Lin
  • H. Liu
  • L. M. Bao
Original Paper

Abstract

Rutile TiO2 single crystals (SCs) were implanted with Cu ions. The implantation effect on microstructure and magnetic behavior of Cu-doped TiO2 wafers was investigated. The implanted ions are in part successfully incorporated in the host lattice gradually forming a CuO-like species. Although the projected range is ∼117 nm, the induced defects extend much deeper. Room temperature ferromagnetism (RTFM) was observed both in undoped and Cu-doped TiO2 SCs. Their saturation magnetizations were found to be nearly equal to each other, in agreement with our theoretical calculations. Additionally, no superparamagnetism was examined in the zero-field cooled (ZFC) versus field cooled (FC) measurements, revealing an intrinsic ferromagnetic nature in each SC.

Keywords

TiO2 Cu implantation Microstructure Room temperature ferromagnetism 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (11575074), the Open Project of State Key laboratory of Crystal Material, Shandong University (KF1311), the Fundamental Research Funds for the Central Universities (lzujbky-2015-240), the Open Project of Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University (LZUMMM2012003), and the open Project of Key Laboratory of Beam Technology and Material Modification of Ministry of Education, Beijing Normal University (201204).

References

  1. 1.
    Matsumoto, Y., Murakami, M., Shono, T., Hasegawa, T., Fukumura, T., Kawasaki, M., Ahmet, P., Chikyow, T., Koshihara, S.-y., Koinuma, H.: Science 291, 854 (2001)ADSCrossRefGoogle Scholar
  2. 2.
    Prellier, W., Fouchet, A., Mercey, B.: J. Phys.: Condens. Matter 15, R1583 (2003)ADSGoogle Scholar
  3. 3.
    Balcells, L., Frontera, C., Sandiumenge, F., Roig, A., Martínez, B., Kouam, J., Monty, C.: Appl. Phys. Lett. 89, 122501 (2006)ADSCrossRefGoogle Scholar
  4. 4.
    Wang, Z., Tang, J., Tung, L.D., Zhou, W., Spinu, L.: J. Appl. Phys. 93, 7870 (2003)ADSCrossRefGoogle Scholar
  5. 5.
    Calderón, M.J., Das Sarma, S.: Phys. Rev. B 75, 235203 (2007)ADSCrossRefGoogle Scholar
  6. 6.
    Toyosaki, H., Fukumura, T., Yamada, Y., Nakajima, K., Chikyow, T., Hasegawa, T., Koinuma, H., Kawasaki, M.: Nat. Mater. 3, 221 (2004)ADSCrossRefGoogle Scholar
  7. 7.
    Kim, J.Y., Park, J.H., Park, B.G., Noh, H.J., Oh, S.J., Yang, J.S., Kim, D.H., Bu, S.D., Noh, T.W., Lin, H.J., Hsieh, H.H., Chen, C.T.: Phys. Rev. Lett. 90, 017401 (2003)ADSCrossRefGoogle Scholar
  8. 8.
    Zhao, Y.L., Motapothula, M., Yakovlev, N.L., Liu, Z.Q., Dhar, S., Rusydi, A., Breese, M.B.H., Wang, Q., Venkatesan, T.: Appl. Phys. Lett. 101, 142105 (2012)ADSCrossRefGoogle Scholar
  9. 9.
    Coey, J.M.D., Venkatesan, M., Fitzgerald, C. B.: Nat. Mater. 4, 173 (2005)ADSCrossRefGoogle Scholar
  10. 10.
    Coey, J.M.D.: Solid State Sci. 7, 660 (2005)ADSCrossRefGoogle Scholar
  11. 11.
    Duhalde, S., Vignolo, M.F., Golmar, F., Chiliotte, C., Torres, C.E.R., Errico, L.A., Cabrera, A.F., Rentería, M., Rentería, F.H., Weissmann, M.: Phys. Rev. B 72, 161313 (2005)ADSCrossRefGoogle Scholar
  12. 12.
    Torres, C.E.R., Golmar, F., Cabrera, A.F., Errico, L., Navarro, A.M.M., Rentería, M., Sánchez, F.H., Duhalde, S.: Appl. Surf. Sci. 254, 365 (2007)ADSCrossRefGoogle Scholar
  13. 13.
    Hou, D.L., Zhao, R.B., Meng, H.J., Jia, L.Y., Ye, X.J., Zhou, H.J., Li, X.L.: Thin Solid Films 516, 3223 (2008)ADSCrossRefGoogle Scholar
  14. 14.
    Townsend, P.D.: Rep. Prog. Phys. 50, 501 (1987)ADSCrossRefGoogle Scholar
  15. 15.
    Thomas, B.S., Marks, N.A., Corrales, L.R., Devanathan, R. Nucl. Instrum. Methods phys. Res. B 239, 191 (2005)ADSCrossRefGoogle Scholar
  16. 16.
    Lu, T.C., Lin, L.B., Wu, S.Y., Zhao, C.P., Xu, X.C., Tian, Y.F.: Nucl. Instrum. Methods phys. Res. B 191, 291 (2002)ADSCrossRefGoogle Scholar
  17. 17.
    Zhou, S., Čižmár, E., Potzger, K., Krause, M., Talut, G., Helm, M., Fassbender, J., Zvyagin, S.A., Wosnitza, J., Schmidt, H.: Phys. Rev. B 79, 113201 (2009)ADSCrossRefGoogle Scholar
  18. 18.
    Tuomisto, F., Makkonen, I.: Rev. Mod. Phys. 85, 1583 (2013)ADSCrossRefGoogle Scholar
  19. 19.
    Schultz, P.J., Lynn, K.G.: Rev. Mod. Phys. 60, 701 (1988)ADSCrossRefGoogle Scholar
  20. 20.
    Velu, S., Suzuki, K., Gopinath, C.S., Yoshida, H., Hattori, T.: Phys. Chem. Chem. Phys. 4, 1990 (2002)CrossRefGoogle Scholar
  21. 21.
    D’Acapito, F., Mobilio, S., Regnard, J.R., Cattaruzza, E., Gonella, F., Mazzoldi, P.: J. Non-Cryst. Solids 364, 232–234 (1998)Google Scholar
  22. 22.
    Padovani, S., Puzzovio, D., Sada, C., Mazzoldi, P., Borgia, I., Sgamellotti, A., Brunetti, B.G., Cartechini, L., D’Acapito, F., Maurizio, C., Shokoui, F., Oliaiy, P., Rahighi, J., Lamehi-Rachti, M., Pantos, E.: Appl. Phys. A 83, 521 (2006)ADSCrossRefGoogle Scholar
  23. 23.
    Sangaletti, L., Mozzati, M.C., Galinetto, P., Azzoni, C.B., Speghini, A., Bettinelli, M., Calestani, G.: J. Phys.: Condens. Matter 18, 7643 (2006)ADSGoogle Scholar
  24. 24.
    Hong, N.H., Sakai, J., Poirot, N., Brizé, V.: Phys. Rev. B 73, 132404 (2006)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • N. N. Xu
    • 1
  • G. P. Li
    • 1
    • 2
    Email author
  • Q. L. Lin
    • 1
  • H. Liu
    • 1
  • L. M. Bao
    • 3
  1. 1.School of Nuclear Science and TechnologyLanzhou UniversityLanzhouPeople’s Republic of China
  2. 2.State Key Laboratory of Crystal MaterialsShandong UniversityJinanPeople’s Republic of China
  3. 3.Shanghai Institute of Applied PhysicsChinese Academy of SciencesShanghaiPeople’s Republic of China

Personalised recommendations