Skip to main content

Non-Resonant Microwave Absorption in SmFeAsO 0.80 F 0.20: Line Shape and Structure Evolution with Temperature

Abstract

‘Non-resonant Microwave Absorption’ (NRMA) or the ‘Low field microwave absorption’ (LFMA) measurements on high-quality polycrystalline SmFeAsO0.80F0.20 superconducting sample were carried as functions of temperature and microwave power. The LFMA line shape is complex with two peaks namely; broad peak 1 and narrow peak 2 akin to one reported in SmFeAsO0.88F0.12 as reported by Onyancha et al (Supercond. Nov. Magn. 28, 2927–2934, 2015). This unquestionably illustrates that these peaks are a common feature in F-doped SmFeAsO. The LFMA signal as a function of temperature reveals that T cT = 1K in SmFeAsO0.80F0.20 compared to 4 K in SmFeAsO0.88F0.12 (T is the characteristic temperature at which the narrow peak appears as we cool down the sample below T c); hence inferring that the narrow peak is fluorine doping dependent. Furthermore, LFMA signal evolution with microwave power does not show phase reversal (anomalous absorption) at 2.227 mW which is a stark contrast to what was observed in SmFeAsO0.88F0.12 as reported by Onyancha et al (Physica C: Supercond. Appl. 533:49–52, 2017). The absence of phase reversal within measured microwave power indicates presence of hysteretic Josephson junction. These findings establish few non-superconducting inclusions in SmFeAsO0.80F0.20 system.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Onyancha, R.B., Shimoyama, J., Singh, S.J., Ogino, H., Srinivasu, V.V.: J. Supercond. Nov. Magn. 28, 2927–2934 (2015)

    Article  Google Scholar 

  2. 2.

    Onyancha, R.B., Shimoyama, J., Singh, S.J., Hayashi, K., Ogino, H., Srinivasu, V.V.: Physica C: Supercond. Appl. 533, 49–52 (2017)

    ADS  Article  Google Scholar 

  3. 3.

    Kamihara, Y., Watanabe, T., Hirano, M., Hosono, H.: J. Am. Chem. Soc. 130, 3296 (2008)

    Article  Google Scholar 

  4. 4.

    Hosono, H., Kuroki, K.: Phyica C 514, 399–422 (2015)

    ADS  Article  Google Scholar 

  5. 5.

    Bhat, S.V., Panguly, P., Rao, C.N.R.: Pramana J. Phys. 28, L425–L427 (1987)

    ADS  Article  Google Scholar 

  6. 6.

    Bhat, S.V., Ganguly, P., Ramakrishnan, T.V., Rao, C.N.R.: Pramana J. Phys 20, L559–L563 (1987)

    ADS  Google Scholar 

  7. 7.

    Blazey, K.W., Muller, K.A., Bednorz, J.G., Berlinger, W., Amoretti, G., Buluggiu, E., Vera, A., Matacotta, F.C.: Phys. Rev. B 36, 7241 (1987)

    ADS  Article  Google Scholar 

  8. 8.

    Dunny, R., Hautala, J., Ducharme, S., Lee, B., Symko, O.G., Taylor, P.C., Zheng, D.J., Xu, J.A.: Phys. Rev. B 36, 2361 (1987)

    ADS  Article  Google Scholar 

  9. 9.

    Stalder, M., Stefanicki, G., Warden, M., Portis, A.M., Waldner, F.: Physica C 153–155, 659–660 (1988)

    Article  Google Scholar 

  10. 10.

    Veinger, A., Zabrodiskii, T., Tisnek, J.: Alloys Compd. 751, 369 (2004)

    Google Scholar 

  11. 11.

    Montiel, H., Alvarez, G., Betancourt, I., Zamarano, R., Valenzuela, R.: Appl. Phys. Lett. 86, 072503 (2005)

    ADS  Article  Google Scholar 

  12. 12.

    Alvarez, G., Zamorano, R.: J. Alloys Compd. 231, 369 (2004)

    Google Scholar 

  13. 13.

    Rakhimov, R., Ries, H., Jones, D., Glebov, L.: Appl. Phys. Lett. 751, 76 (2000)

    Google Scholar 

  14. 14.

    Gavi, H., Ngom, B.D., Beye, A.C., Strydom, A.M., Srinivasu, V.V., Chaker, M., Manyala, N.: J. Magn. Magn. Mater. 324, 1172 (2012)

    ADS  Article  Google Scholar 

  15. 15.

    Srinivasu, V.V., Pinto, R., Sastry, M.D.: Appl. Supercond. 4, 195–201 (1996)

    Article  Google Scholar 

  16. 16.

    Knauf, N., Fischer, J., Schmidt, P., Roden, B., Borowski, R., Buchner, B., Micklitz, H., Freimuth, A., Kataev, V., Khomskii, D.I.: Europhys. Lett. 35, 541–546 (1996)

    ADS  Article  Google Scholar 

  17. 17.

    Knauf, N., Fischer, J., Schmidt, P., Roden, B., Borowski, R., Buchner, B., Micklitz, H., Freimuth, A., Khomskii, D.I., Kataev, V.: Phys. C 299, 125–135 (1998)

    ADS  Article  Google Scholar 

  18. 18.

    Ji, L., Rzchowski, M.S., Anand, N., Tinkham, M.: Phys. Rev. B 47, 470 (1993)

    ADS  Article  Google Scholar 

  19. 19.

    Panarina, N.Y., Talanov, Y.I., Shaposhnikova, T.S., Beysengulov, N.R., Vavilova, E.: Phys. Rev. B 81, 224509 (2010)

    ADS  Article  Google Scholar 

  20. 20.

    Talanov, Y., Beisengulov, N., Kornilov, G., Shaposhnikova, T., Vavilova, E., Nacke, C., Panarina, S., Hess, C., Kataev, V., Buchner, B.: Supercond. Sci. Technol. 26, 045015 (2013)

    ADS  Article  Google Scholar 

  21. 21.

    Onyancha, R.B., Shimoyama, J., Singh, S.J., Ogino, H., Srinivasu, V.V. doi:10.1007/s10948-016-3845-z

  22. 22.

    Singh, J.S., Shimoyama, J., Yamamoto, A., Ogino, H., Kishio, K.: Supercond. Sci. Technol. 26, 065006 (2013)

    ADS  Article  Google Scholar 

  23. 23.

    Singh, S.J., Shimoyama, J., Yamamoto, A., Ogino, H., Kishio, K.: IEEE Trans. Appl. Supercond. 23, 7300605 (2013)

    Article  Google Scholar 

  24. 24.

    Deutscher, G., Muller, K.A.: Phys. Rev. Lett. 59, 1745 (1987)

    ADS  Article  Google Scholar 

  25. 25.

    Portis, A.M., Blazey, K.W., Muller, K.A., Bednorz, J.G.: Europhys. Lett. 5, 467–472 (1988)

    ADS  Article  Google Scholar 

  26. 26.

    Dulcic, A., Rakvin, B., Pozek, M.: Europhys. Lett. 10, 593–598 (1989)

    ADS  Article  Google Scholar 

  27. 27.

    Ji, L., Rzchowski, M.S., Tinkham, M.: Phys. Rev. B 42, 4838 (1990)

    ADS  Article  Google Scholar 

  28. 28.

    Silva, E., Giura, M., Marcon, R., Fastampa, R., Balestrino, G., Marinelli, M., Milani, E.: Phys. Rev. B 45, 12566 (1992)

    ADS  Article  Google Scholar 

  29. 29.

    Owens, F.J.: Phyica C 171, 25 (1990)

    ADS  Article  Google Scholar 

  30. 30.

    Weides, M., Kemmler, M., Kohlstedt, H., Waser, R., Koell, D., Kleiner, R., Goldobin, E.: PRL 97, 247001 (2006)

    ADS  Article  Google Scholar 

Download references

Acknowledgments

This work was supported by JSPS Grant-in-Aid for Scientific Research on Innovative Areas “Mixed anion” (Grant Number JP16H6439) and by Chair of Superconductivity Technology, University of South Africa.

Author information

Affiliations

Authors

Corresponding author

Correspondence to R. B. Onyancha.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Onyancha, R.B., Shimoyama, J., Das, J. et al. Non-Resonant Microwave Absorption in SmFeAsO 0.80 F 0.20: Line Shape and Structure Evolution with Temperature. J Supercond Nov Magn 30, 2429–2434 (2017). https://doi.org/10.1007/s10948-017-4074-9

Download citation

Keywords

  • Low-field microwave absorption
  • Josephson junction
  • Iron-based superconductors
  • High T c superconductors and fluxons