Effects of A-Site Doping on Structural, Magnetic, and Electrical Properties of La0.8−x A x Sr0.2MnO3 (0 ≤ x ≤ 0.6) Manganites (A = Pr, Nd, and Gd)


The effects of rare-earth doping were investigated on the structural, magnetic, and electrical properties of La0.8−x A x Sr0.2MnO3 (0 ≤ x ≤ 0.6) manganites. Results showed that the Pr- and Nd-doped samples were single phase and crystallized in the rhombohedral structure with an R-3C space group. The Gd-doped samples were also single phase for values of x equal to 0 and 0.1 but secondary phases were detected for higher doping levels (i.e., increasing mismatch of the ionic lattice). Moreover, the crystal structure was observed to transform from a rhombohedral (x = 0, 0.1) to an orthorhombic (x ≥ 0.2 samples) one with the Pnma space group. In all the samples, reducing ionic radius of the dopant ion led to a reduction in the unit cell volume. ac magnetic susceptibility measurements showed that in the Pr- and Nd-doped samples, the transition temperature decreased from a paramagnetic (PM) to a ferromagnetic (FM) one with decreasing ionic radius of dopant elements. A frequency-dependent peak was observed in the ac susceptibility for x = 0.4, 0.5, and 0.6, revealing the presence of a spin-glass state at low temperatures. The Curie temperature (T C) for the Gd-doped samples changed nonuniformly due to the formation of secondary phases. However, no spin-glass behavior was observed in the Gd-doped samples. The temperature dependence of resistivity indicated that the Nd- and Pr-doped samples with low doping levels contained an FM metal, while those with higher doping levels exhibited an FM-insulator behavior. In the Gd-doped series, the FM-metallic phase was observed in all the doped samples. In order to understand the transport mechanism, several theoretical models such as small polaron hopping and variable-range hopping were explored to fit the resistivity data; the results confirmed our experimental data.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11


  1. 1.

    Kansara, S., Dhruv, D., Joshi, Z., Pandya, D., Rayaprol, S., Solanki, P., Kuberkar, D., Shah, N.: Structure and microstructure dependent transport and magnetic properties of sol–gel grown nanostructured La0.6Nd0.1Sr0.3MnO3 manganites: role of oxygen. Appl. Surf. Sci. 356, 1272–1281 (2015)

    ADS  Article  Google Scholar 

  2. 2.

    Bibes, M., Barthelemy, A.: Oxide spintronics. IEEE Trans. Electron. Devices 54, 1003–1023 (2007)

    ADS  Article  Google Scholar 

  3. 3.

    Yajima, T., Hikita, Y., Hwang, H.Y.: A heteroepitaxial perovskite metal-base transistor. Nat. Mater. 10, 198–201 (2011)

    ADS  Article  Google Scholar 

  4. 4.

    Jin, S., Tiefel, T.H., McCormack, M., Fastnacht, R., Ramesh, R., Chen, L.: Thousandfold change in resistivity in magnetoresistive La-Ca-Mn-O films. Science 264, 413–415 (1994)

    ADS  Article  Google Scholar 

  5. 5.

    Parkin, S., Jiang, X., Kaiser, C., Panchula, A., Roche, K., Samant, M.: Magnetically engineered spintronic sensors and memory. Proc. IEEE 91, 661–680 (2003)

    Article  Google Scholar 

  6. 6.

    Imada, M., Fujimori, A., Tokura, Y.: Metal-insulator transitions. Rev. Mod. Phys. 70, 1039 (1998)

    ADS  Article  Google Scholar 

  7. 7.

    Salamon, M.B., Jaime, M.: The physics of manganites: structure and transport. Rev. Mod. Phys. 73, 583 (2001)

    ADS  Article  Google Scholar 

  8. 8.

    Dagotto, E., Hotta, T., Moreo, A.: Colossal magnetoresistant materials: the key role of phase separation. Phys. Rep. 344, 1–153 (2001)

    ADS  Article  Google Scholar 

  9. 9.

    Urushibara, A., Moritomo, Y., Arima, T., Asamitsu, A., Kido, G., Tokura, Y.: Insulator-metal transition and giant magnetoresistance in La1-xSrxMnO3. Phys. Rev. B 51, 14103 (1995)

    ADS  Article  Google Scholar 

  10. 10.

    Kanamori, J.: Crystal distortion in magnetic compounds. J. Appl. Phys. 31, S14–S23 (1960)

    ADS  Article  Google Scholar 

  11. 11.

    Rondinelli, J.M., May, S.J., Freeland, J.W.: Control of octahedral connectivity in perovskite oxide heterostructures: an emerging route to multifunctional materials discovery. MRS Bull. 37, 261–270 (2012)

    Article  Google Scholar 

  12. 12.

    Landolt, H., Hellwege, K.-H.: Magnetic and Other Properties of Oxides and Related Compounds, vol. 4 Springer (1970)

  13. 13.

    Goodenough, J.: Electronic and ionic transport properties and other physical aspects of perovskites. Rep. Prog. Phys. 67, 1915 (2004)

    ADS  Article  Google Scholar 

  14. 14.

    Ahmed, A., Papavassiliou, G., Mohamed, H., Ibrahim, E.: Structural, magnetic and electronic properties on the Li-doped manganites. J. Magn. Magn. Mater. 392, 27–41 (2015)

    ADS  Article  Google Scholar 

  15. 15.

    Das, P.T., Gupta, K., Jana, P.C., Nath, T.K.: Influence of samarium doping on electronic and magneto-transport properties of La0.9–xSmxSr0.1MnO3 (0.1 = x = 0.5) nanoparticles. In: AIP Conference Proceedings, pp. 348–350 (2014)

  16. 16.

    Fan, J., Xu, L., Zhang, X., Shi, Y., Zhang, W., Zhu, Y., Gao, B., Hong, B., Zhang, L., Tong, W.: Effect of A-site average radius and cation disorder on magnetism and electronic properties in manganite ∖hbox{L a}_{0.6}∖hbox{A}_{0.1}hbox{Sr}_{0.3}hbox{MnO}_{3}(A = sm,Dy,Er). J. Mater. Sci. 50, 2130–2137 (2015)

    ADS  Article  Google Scholar 

  17. 17.

    Lakshmi, Y.K., Reddy, P.V.: Influence of silver doping on the electrical and magnetic behavior of La0.7Ca0.3MnO3 manganites. Solid State Sci. 12, 1731–1740 (2010)

    ADS  Article  Google Scholar 

  18. 18.

    Reddy, G.L., Lakshmi, Y.K., Rao, S.M., Reddy, P.V.: Thermopower studies of rare earth doped lanthanum barium manganites. J. Magn. Magn. Mater. 362, 20–26 (2014)

    ADS  Article  Google Scholar 

  19. 19.

    Sankar, C.R., Vijayanand, S., Joy, P.: Ferromagnetic to spin glass cross over in (La, Tb)2/3Ca1/3MnO3. Solid State Sci. 11, 714–718 (2009)

    ADS  Article  Google Scholar 

  20. 20.

    Sun, Y., Salamon, M., Tong, W., Zhang, Y.: Magnetism, electronic transport, and colossal magnetoresistance of (La0.7-xGdx)Sr0.3MnO3(0 x 0.6). Phys. Rev. B 66, 094414 (2002)

    ADS  Article  Google Scholar 

  21. 21.

    Rodriguez-Martinez, L.M., Attfield, J.P.: Cation disorder and size effects in magnetoresistive manganese oxide perovskites. Phys. Rev. B 54, R15622 (1996)

    ADS  Article  Google Scholar 

  22. 22.

    Nayek, C., Samanta, S., Manna, K., Pokle, A., Nanda, B., Murugavel, P.: Spin-glass state in nanoparticulate (La0.7Sr0.3MnO3)1-x(BaTiO3)x solid solutions: experimental and density-functional studies. Phys. Rev. B 93, 094401 (2016)

    ADS  Article  Google Scholar 

  23. 23.

    Maignan, A., Sundaresan, A., Varadaraju, U., Raveau, B.: Magnetization relaxation and aging in spin-glass (La, Y)1-xCaxMnO3 (x = 0.25, 0.3 and 0.5) perovskite. J. Magn. Magn. Mater. 184, 83–88 (1998)

    ADS  Article  Google Scholar 

  24. 24.

    Kundu, A.K., Nordblad, P., Rao, C.: Glassy behaviour of the ferromagnetic and the non-magnetic insulating states of the rare earth manganates Ln0.7Ba0.3MnO3 (Ln = Nd or Gd). J. Phys.: Condens. Matter 18, 4809 (2006)

    ADS  Google Scholar 

  25. 25.

    Dho, J., Kim, W., Hur, N.: Reentrant spin glass behavior in Cr-doped perovskite manganite. Phys. Rev. Lett. 89, 027202 (2002)

    ADS  Article  Google Scholar 

  26. 26.

    Aslibeiki, B., Kameli, P., Salamati, H.: Reentrant spin glass behavior in La0.8Sr0.2Mn1-xTixO3 manganites. Solid State Commun. 149, 1274–1277 (2009)

    ADS  Article  Google Scholar 

  27. 27.

    Peña, O., Bahout, M., Ghanimi, K., Duran, P., Gutierrez, D., Moure, C.: Spin reversal and ferrimagnetism in (Gd, Ca)MnO3. J. Mater. Chem. 12, 2480–2485 (2002)

    Article  Google Scholar 

  28. 28.

    Peña, O., Bahout, M., Gutierrez, D., Duran, P., Moure, C.: Interacting networks and spin polarization in (Dy, Ca)MnO3. Solid State Sci. 5, 1217–1227 (2003)

    ADS  Article  Google Scholar 

  29. 29.

    Wang, X., Li, D., Cui, T., Kharel, P., Liu, W., Zhang, Z.: Magnetic and optical properties of multiferroic GdMnO3 nanoparticles. J. Appl. Phys. 107, 09B510 (2010)

    Article  Google Scholar 

  30. 30.

    Poèuèa-Nešiæ, M., Stanojeviæ, Z.M., Brankoviæ, Z., Cotiè, P., Bernik, S., Góes, M.S., Marinkoviæ, B., Varela, J.A., Brankoviæ, G.: Mechanochemical synthesis of yttrium manganite. J. Alloys Compd. 552, 451–456 (2013)

    Article  Google Scholar 

  31. 31.

    Ade, R., Singh, R.: Disorder-driven phase transition in La0.37D0.30Ca0.33MnO3 (D = Bi, Sm) manganites. AIP Adv. 5, 087105 (2015)

    ADS  Article  Google Scholar 

  32. 32.

    Shannon, R.T.: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst allographica Section A: Crystal Physics, Diffraction. Theoretical and General Crystallography 32, 751–767 (1976)

    Google Scholar 

  33. 33.

    Collado, J., García-Muñoz, J., Aranda, M.: Effects of the A-site cation number on the properties of Ln5/8M3/8MnO3 manganites. J. Solid State Chem. 183, 1083–1089 (2010)

    ADS  Article  Google Scholar 

  34. 34.

    Collado, J., Frontera, C., García-Muñoz, J., Aranda, M.: Effect of cation site-disorder on the structure and magneto-transport properties of Ln5/8M3/8MnO3 manganites. J. Solid State Chem. 178, 1949–1958 (2005)

    ADS  Article  Google Scholar 

  35. 35.

    Varshney, D., Mansuri, I., Kaurav, N., Lung, W., Kuo, Y.: Influence of Ce doping on electrical and thermal properties of La0.7-xCexCa0.3MnO3 (0.0 = x = 0.7) manganites. J. Magn. Magn. Mater. 324, 3276–3285 (2012)

    ADS  Article  Google Scholar 

  36. 36.

    Mydosh, J.A.: Spin glasses. Taylor and Francis, (1993)

  37. 37.

    Bourouina, M., Krichene, A., Thaljaoui, R., Pêkaa, M., Boujelben, W.: Effect of gadolinium doping on the structural and electrical properties of Pr0.5-xGdxSr0.5MnO3 (x = 0.0-0.1) manganites. J. Supercond. Nov. Magn. 28, 2743–2750 (2015)

    Article  Google Scholar 

  38. 38.

    Mostafa, M., Ata-Allah, S., Youssef, A., Refai, H.: Electric and AC magnetic investigation of the manganites La0.7Ca0.3Mn0.96In0.04xAl(1-x)0.04O3; (0.0 \(\leqslant x \leqslant \) 1.0). J. Magn. Magn. Mater. 320, 344–353 (2008)

    ADS  Article  Google Scholar 

  39. 39.

    Altintas, S., Amira, A., Mahamdioua, N., Varilci, A., Terzioglu, C.: Effect of Eu doping on structural and magneto-electrical properties of La0.7Ca0.3MnO3 manganites. J. Alloys Compd. 509, 4510–4515 (2011)

    Article  Google Scholar 

  40. 40.

    Tka, E., Cherif, K., Dhahri, J., Dhahri, E.: Effects of non magnetic aluminum Al doping on the structural, magnetic and transport properties in La0.57Nd0.1Sr0.33MnO3 manganite oxide. J. Alloys Compd. 509, 8047–8055 (2011)

    Article  Google Scholar 

  41. 41.

    Venkataiah, G., Krishna, D., Vithal, M., Rao, S., Bhat, S., Prasad, V., Subramanyam, S., Reddy, P.V.: Effect of sintering temperature on electrical transport properties of La0.67Ca0.33MnO3. Physica B 357, 370–379 (2005)

    ADS  Article  Google Scholar 

  42. 42.

    Thaljaoui, R., Boujelben, W., Pêkaa, M., Pêkaa, K., Cheikhrouhou, A.: Structural and electrical properties of monovalent doped manganites Pr0.6Sr0.4-xKxMnO3 (x = 0, 0.05 and 0.1). J. Supercond. Nov. Magn. 26, 1625–1630 (2013)

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to P. Kameli.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zarifi, M., Kameli, P., Ehsani, M.H. et al. Effects of A-Site Doping on Structural, Magnetic, and Electrical Properties of La0.8−x A x Sr0.2MnO3 (0 ≤ x ≤ 0.6) Manganites (A = Pr, Nd, and Gd). J Supercond Nov Magn 30, 2683–2692 (2017). https://doi.org/10.1007/s10948-017-4066-9

Download citation


  • Manganite
  • Doping
  • Tolerance factor
  • Disorder
  • Spin glass