Skip to main content
Log in

Four-Wave Mixing-Induced Maximal Entanglement in Superconducting Phase Quantum Circuits

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

We are interested in studying the entanglement of an array of superconducting phase quantum circuits and external magnetic fluxes. It is shown that in a four-level cascade type quantum system, the degree of entanglement increases by generation of fourth microwave pulse, in multi-photon resonance condition. We achieve the maximal entanglement induced via four-wave mixing in our model. Moreover, it is demonstrated that the population distribution of the dressed states approaches to be uniform as the degree of entanglement becomes maximum. We can control the entanglement of the composite system by changing amplitudes of the applied magnetic fluxes. Our results can be used in quantum information processing via superconducting quantum circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. You, J.Q., Nori, F.: Atomic physics and quantum optics using superconducting circuits. Nature 474, 589–597 (2011)

    Article  ADS  Google Scholar 

  2. Koch, J., Yu, T.M., Gambetta, J., Houck, A.A., Schuster, D.I., Majer, J., Blais, A., Devoret, M.H., Girvin, S.M., Schoelkopf, R.J.: Charge-insensitive qubit design derived from the Cooper pair box. Phys. Rev. A 76, 042319 (2007)

    Article  ADS  Google Scholar 

  3. Sillanpää, M. A., Li, J., Cicak, K., Altomar, F., Park, J.I., Simmonds, R.W., Paraoanu, G.S., Hakonen, P.J.: Autler-townes effect in a superconducting three-level system. Phys. Rev. Lett. 103, 193601 (2009)

    Article  ADS  Google Scholar 

  4. Sun, H.-C., Liu, Y.-X., Ian, H., You, J.Q., Il’ichev, E., Nori, F.: Electromagnetically induced transparency and Autler-Townes splitting in superconducting flux quantum circuits. Phys. Rev. A 89, 063822 (2014)

    Article  ADS  Google Scholar 

  5. Shnyrkov, V.I., Wagner, T.h., Born, D., Shevchenko, S.N., Krech, W., Omelyanchouk, A.N., Il’ichev, E., Meyer, H.-G.: Multiphoton transitions between energy levels in a phase-biased Cooper-pair box. Phys. Rev. B 73, 024506 (2006)

    Article  ADS  Google Scholar 

  6. Liu, Y.-X., Sun, H.-C., Peng, Z.H., Miranowicz, A., Nori, F.: Controllable microwave three-wave mixing via a single three-level superconducting quantum circuit. Sci. Rep. 4, 7289 (2014)

    Article  Google Scholar 

  7. Liu, Y.-X., Sun, C.P., Nori, F.: Scalable superconducting qubit circuits using dressed states. Phys. Rev. A 74, 052321 (2006)

    Article  ADS  Google Scholar 

  8. Liu, Y.-X., You, J.Q., Wei, L.F., Sun, C.P., Nori, F.: Optical selection rules and phase-dependent adiabatic state control in a superconducting quantum circuit. Phys. Rev. Lett. 95, 087001 (2005)

    Article  ADS  Google Scholar 

  9. Buluta, I., Ashhab, S., Nori, F.: Natural and artificial atoms for quantum computation. Rep. Prog. Phys. 74, 104401 (2011)

    Article  ADS  Google Scholar 

  10. Ficek, Z., Swain, S.: Quantum Coherence and Interference; Theory and Experiments. Springer, Berlin (2004)

    MATH  Google Scholar 

  11. Bennett, C.H., DiVincenzo, D.P., Smolin, J.A., Wootters, W.K.: Mixed-state entanglement and quantum error correction. Phys. Rev. A 54, 3824 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  12. Benenti, G., Casati, G., Strini, G.: Principles of Quantum Computation and Information; Vol 1 :Basic Concepts. World Scientific, Singapore (2004)

    Book  MATH  Google Scholar 

  13. Ekert, A.K.: Quantum cryptography based on Bells theorem. Phys. Rev. Lett. 67, 661 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Kurtsiefer, C., Dross, O., Voigt, D., Ekstrom, C.R., Pfau, T., Mlynek, J.: Observation of correlated atom-photon pairs on the single-particle level. Phys. Rev. A 55, 2539 (1997)

    Article  ADS  Google Scholar 

  16. Jaksch, D., Briegel, H.J., Cirac, J.I., Gardiner, C.W., Zoller, P.: Entanglement of atoms via cold controlled collisions. Phys. Rev. Lett. 82, 1975 (1999)

    Article  ADS  Google Scholar 

  17. Li, J., Chalapat, K., Paraoanu, G.S.: Enhancement of sudden death of entanglement for driven qubits. J. Low. Temp. Phys. 153, 294–303 (2008)

    Article  ADS  Google Scholar 

  18. Li, J., Chalapat, K., Paraoanu, G.S.: Entanglement of superconducting qubits via microwave fields: classical and quantum regimes. Phys. Rev. B 78, 064503 (2008)

    Article  ADS  Google Scholar 

  19. Zhang, J., Liu, Y.-X., Li, C.-W. , Tarn, T.-J., Nori, F.: Generating stationary entangled states in superconducting qubits. Phys. Rev. A 79, 052308 (2009)

    Article  ADS  Google Scholar 

  20. Li, J., Paraoanu, G.S.: Generation and propagation of entanglement in driven coupled-qubit systems. New J. Phys. 11, 113020 (2009)

    Article  ADS  Google Scholar 

  21. Yang, C.-P., Su, Q.-P., Nori, F.: Entanglement generation and quantum information transfer between spatially-separated qubits in different cavities. New J. Phys. 15, 115003 (2013)

    Article  ADS  Google Scholar 

  22. Izmalkov, A., Grajcar, M., Il’ichev, E., Wagner, T., Meyer, H. -G., Smirnov, A.Y., Amin, M.H.S., van den Brink, A.M., Zagoskin, A.M.: Evidence for entangled states of two coupled flux qubits. Phys. Rev. Lett. 93, 037003 (2004)

  23. Herrera, M., Reina, J.H.: Quantum entanglement and correlations in superconducting flux qubits. J. Supercond. Nov. Magn. 25, 2149–2156 (2012)

    Article  Google Scholar 

  24. DiCarlo, L., Reed, M.D., Sun, L., Johnson, B.R., Chow, J.M., Gambetta, J.M., Frunzio, L., Girvin, S.M., Devoret, M.H., Schoelkopf, R.J.: Preparation and measurement of three-qubit entanglement in a superconducting circuit. Nature 467, 574–578 (2010)

    Article  ADS  Google Scholar 

  25. Abdel-Aty, M., Everitt, M.J.: Delayed creation of entanglement in superconducting qubits interacting with a microwave field. Eur. Phys. J. B 74, 81–89 (2010)

    Article  ADS  MATH  Google Scholar 

  26. Zhang, Y.Q., Xu, J.B.: Entanglement control in a superconducting qubit system by an electromagnetic field. Eur. Phys. J. D 63, 483–488 (2011)

    Article  ADS  Google Scholar 

  27. Xue, Z.-Y., Li, Y.-F., Zhou, J., Gao, Y.-M., Zhang, G.: Tunable interaction of superconducting flux qubits in circuit QED. Quantum Inf. Process. 15, 721–729 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Eichler, C., Lang, C., Fink, J.M., Govenius, J., Filipp, S., Wallraff, A.: Observation of entanglement between itinerant microwave photons and a superconducting qubit. Phys. Rev. Lett. 109, 240501 (2012)

    Article  ADS  Google Scholar 

  29. Amini Sabegh, Z., Vafafard, A., Maleki, M.A., Mahmoudi, M.: Superluminal pulse propagation and amplification without inversion of microwave radiation via four-wave mixing in superconducting phase quantum circuits. Laser Phys. Lett. 12, 085202 (2015)

    Article  ADS  Google Scholar 

  30. Li, J., Paraoanu, G.S., Cicak, K., Altomare, F., Park, J.I., Simmonds, R.W., Sillanpää, M. A., Hakonen, P.J.: Decoherence, Autler-Townes effect, and dark states in two-tone driving of a three-level superconducting system. Phys. Rev. B 84, 104527 (2011)

    Article  ADS  Google Scholar 

  31. Phoenix, S.J.D., Knight, P.L.: Fluctuations and entropy in models of quantum optical resonance. Ann. Phys. 186, 381–407 (1988)

    Article  ADS  MATH  Google Scholar 

  32. Araki, H., Lieb, E.: Entropy inequalities. Comm. Math. Phys. 18, 160–170 (1970)

    Article  ADS  MathSciNet  Google Scholar 

  33. Phoenix, S.J.D., Knight, P.L.: Establishment of an entangled atom-field state in the Jaynes-Cummings model. Phys. Rev. A 44, 6023 (1991)

    Article  ADS  Google Scholar 

  34. Phoenix, S.J.D., Knight, P.L.: Comment on Collapse and revival of the state vector in the Jaynes-Cummings model: An example of state preparation by a quantum apparatus. Phys. Rev. Lett. 66, 2833 (1991)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Mahmoudi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sabegh, Z.A., Maleki, M.A. & Mahmoudi, M. Four-Wave Mixing-Induced Maximal Entanglement in Superconducting Phase Quantum Circuits. J Supercond Nov Magn 30, 2393–2400 (2017). https://doi.org/10.1007/s10948-017-4053-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-017-4053-1

Keywords

Navigation