Skip to main content
Log in

Hopping Transport and Spin-Polarized Tunneling Mechanism in Cr-Doped Gd0.7Ca0.3Mn1−x Cr x O3 (x = 0.0–0.5)

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Temperature-dependent DC electrical resistivity of polycrystalline samples with orthorhombic perovskite structure Gd0.7Ca0.3Mn1−x Cr x O3 (x = 0.0–0.5) has been reported. The samples were prepared by the solid-state reaction method. The resistivity of all the samples indicates a semiconducting nature. In the high-temperature region, the electrical conduction process follows the small polaron hopping (SPH) mechanism showing exponential variation of resistivity with temperature. The activation energy increases with Cr concentration. The low-temperature resistivity data follows Mott’s ln(ρT −1/2)∼T −1/4 law of variable-range hopping (VRH) conduction mechanism. The estimated values of hopping distances (R) and hopping energies (W) of the samples start to increase with increasing Cr concentrations from and above x = 0.5 and satisfy essential conditions of the Mott VRH, i.e., αR>> 1 (α = inverse localization length) and W/ K B T>> 1. This signifies that evaluation of these parameters being logical and the effect can be attributed to high density of doping which introduces simultaneously potential disorder and localized states. The magnetic field-dependent magnetoresistance has been explained by a phenomenological model considering spin-polarized tunneling at grain boundaries in the samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Moreira, J.A., Almeida, A., Chaves, M. R., Kreisel, J., Oliveira, J., Carpinteiro, F., Tavares, P.B.: Magnetically-induced lattice distortions and ferroelectricity in magnetoelectric GdMnO3. J. Phys.: Condens. Matter 24, 436002 (2012)

    Google Scholar 

  2. Kimura, T., Lawes, G., Goto, T., Tokura, Y., Ramirez, A.P.: Magnetoelectric phase diagrams of orthorhombic RMnO3 (R = Gd, Tb, and Dy). Phys. Rev. B 71, 224425 (2005)

    Article  ADS  Google Scholar 

  3. Khan, M.H., Pal, S., Bose, E.: Nature of temperature- and magnetic-field-dependent conduction mechanism in electron-doped Ca0.85 R0.15MnO3 (R = Pr, La) manganites. Phys. Status Solidi B 251, 559 (2014)

    Article  ADS  Google Scholar 

  4. Biswas, S., Khan, M.H., Pal, S., Bose, E.: The effects of Mn substitution on magnetization reversal properties in Gd0.7Ca0.3MnO3. J. Supercond. Novel Magn. 27, 463 (2014)

    Article  Google Scholar 

  5. Cox, D.E., Radaelli, P.G., Marezio, M., Cheong, S.W.: Structural changes, clustering, and photoinduced phase segregation in Pr0.7Ca0.3MnO3. Phys. Rev. B 57, 3305 (1998)

    Article  ADS  Google Scholar 

  6. Markovich, V., Jung, G., Wisniewski, A., Mogilyansky, D., Puzniak, R., Kohn, A., Wu, X.D., Suzuki, K., Gorodetsky, G.: Magnetic properties of electron-doped La0.23Ca0.77MnO3 nanoparticles. Nanopart. Res. 14, 1119 (2012)

    Article  Google Scholar 

  7. Rao, C.N.R., Raveau, B.: Colossal Magnetoresistance, Charge Ordering and Related Properties and Manganese Oxides, First ed. World Scientific, Singapore (1998)

    Book  Google Scholar 

  8. Tokura, Y.: Colossal Magnetoresistive Oxides, First ed. Gordon and Breach Science, Singapore (2000)

    Google Scholar 

  9. Ramirez, A.P.: Colossal magnetoresistance. J. Phys: Condens. Matter 9, 8171–8199 (1997)

    ADS  Google Scholar 

  10. Snyder, G.J., Booth, C.H., Bridges, F., Hiskes, R., DiCarolis, S., Beasley, M.R., Geballe, T.H.: Local structure, transport, and rare-earth magnetism in the ferrimagnetic perovskite Gd0.67 Ca0.33MnO3. Phys. Rev. B 55, 6453 (1997)

    Article  ADS  Google Scholar 

  11. Pena, O., Bahout, M., Ghanimi, K., Duran, P., Gutierrez, D., Moure, C.: Spin reversal and ferrimagnetism in (Gd,Ca)MnO3. J. Mater. Chem. 12, 2480–2485 (2002)

    Article  Google Scholar 

  12. Krichene, A., Solanki, P.S., Rayaprol, S., Ganesan, V., Boujelben, W., Kuberkar, D.G.: B-site bismuth doping effect on structural, magnetic and magnetotransport properties of La0.5Ca0.5Mn1−x BixO3. Ceram. Int. 41, 2637 (2015)

    Article  Google Scholar 

  13. Lakshmi, L.S., Dorr, K., Nenkov, K., Sastry, V.S., Muller, K.H.: Charge state modification in Mn site substituted CMR manganites: strong deleterious influence on the ferromagnetic-metallic state. J. Phys.: Condens. Matter 236207, 19 (2007)

    Google Scholar 

  14. Liu, X., Xu, X., Zhang, Y.: Effect of Ti dopant on the carrier density collapse in colossal magnetoresistance material La0.7Ca0.3 Mn1−y Ti y O3. Phys. Rev. B 62, 15112 (2000)

    Article  ADS  Google Scholar 

  15. Kimura, T., Kumai, R., Okimoto, Y., Tokura, Y.: Variation of charge-orbital correlation with Cr doping in manganites. Phys. Rev. B 62, 15021 (2000)

    Article  ADS  Google Scholar 

  16. Cabeza, O., Long, M., Severace, C., Bari, M.A., Muirhead, C.M., Francesconi, M.G., Greaves, C.: Magnetization and resistivity in chromium doped manganites. J. Phys.: Condens. Matter 11, 2569 (1999)

    ADS  Google Scholar 

  17. Manjunatha, S.O., Rao, A., Babu, P.D., Tarachand, Okram, G.S.: Studies on magneto-resistance, magnetization and thermoelectric power of Cr substituted La0.65Ca0.35Mn1−x Cr x O3 (0 ≤x≤0.07) manganites. Physica B 475, 1–9 (2015)

    Article  ADS  Google Scholar 

  18. Biswas, S., Khan, M.H., Pal, S., Bose, E.: Evolution of magnetic properties in Cr doped manganites Gd0.7Ca0.3Mn1−x Cr x O3(x = 0.0−0.5). J. Magn. Magn. Mater. 328, 31–34 (2013)

    Article  ADS  Google Scholar 

  19. Rodrigues-Carvajal, J.: Recent advances in magnetic structure determination by neutron powder diffraction. Physica B 192, 55 (1993)

    Article  ADS  Google Scholar 

  20. Coey, J.M.D., Viret, M., von Molnar, S.: Mixed-valence manganites. Adv. Phys. 48, 167–293 (1999)

    Article  ADS  Google Scholar 

  21. Goodenough, J.B., Zhou, J.S.: Localized to itinerant electronic transitions in transition-metal oxides with the perovskite structure. Chem. Mater. 10, 2980–2993 (1998)

    Article  Google Scholar 

  22. Androulakis, J., Migiakis, P., Giapintzakis, J.: La0.95Sr0.05CoO3: an efficient room-temperature thermoelectric oxide. Appl. Phys. Lett. 84, 1099 (2004)

    Article  ADS  Google Scholar 

  23. Liu, Y., Qin, X.Y.: Temperature dependence of electrical resistivity for Ca-doped perovskite type Y1−x Ca x CoO3 prepared by sol–gel process. J. Phys. Chem. Solids 67, 1893–1898 (2006)

    Article  ADS  Google Scholar 

  24. Goodenough, J.B., Wold, A., Arnott, R.J., Menyuk, N.: Relationship between crystal symmetry and magnetic properties of ionic compounds containing mn3+. Phys. Rev. 124, 373 (1961)

    Article  ADS  Google Scholar 

  25. Sun, Y., Xu, X., Zhang, Y.: Effects of Cr doping in La0.67Ca0.33 MnO3: magnetization, resistivity, and thermopower. Phys. Rev. B 054404, 63 (2000)

    Google Scholar 

  26. Modi, A., Gaur, N.K.: Structural, electrical and magnetic phase evolution of Cr substituted GdMn1−x Cr x O3 (0 x 0.2) manganites. J. Alloys Compd. 644, 575–581 (2015)

    Article  Google Scholar 

  27. Lu, C., Hu, N., Yang, M., Xia, S., Wang, H., Wang, J., Xia, Z., Liu, J.M.: High magnetic field phase diagram in electron-doped manganites La0.4Ca0.6Mn1−y Cr y O3. Sci. Rep. 4, 4902 (2014)

    Article  ADS  Google Scholar 

  28. Okutan, M., Bakan, H.I., Korkmaz, K., Yakuphanoglu, F.: Variable range hopping conduction and microstructure properties of semiconducting Co-doped TiO2. Physica B 355, 176 (2005)

    Article  ADS  Google Scholar 

  29. Tank, T.M., Bhargava, D., Sridharan, V., Samatham, S.S., Ganesan, V., Sanyal, S.P.: Influence of Mn site substitution on electrical resistivity and magnetoresistance properties of rare earth manganite. Advanced Materials Research 1047, 123–129 (2014)

    Article  Google Scholar 

  30. Raychaudhuri, P., Nath, T.K., Nigam, A.K., Pinto, R.: A phenomenological model for magnetoresistance in granular polycrystalline colossal magnetoresistive materials: the role of spin polarized tunneling at the grain boundaries. J. Appl. Phys. 84, 2048–2052 (1998)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was partially supported by DST-PURSE and DST-FIST Govt. of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudipta Pal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pal, S., Biswas, S., Nag, R. et al. Hopping Transport and Spin-Polarized Tunneling Mechanism in Cr-Doped Gd0.7Ca0.3Mn1−x Cr x O3 (x = 0.0–0.5). J Supercond Nov Magn 30, 2505–2513 (2017). https://doi.org/10.1007/s10948-017-4023-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-017-4023-7

Keywords

Navigation