Microstructure and Magnetic Properties of FePt Thin Films on SiO2/Si (100) and Si Substrates Prepared Under External Magnetic Field


FePt thin films were prepared by pulsed laser deposition (PLD) on SiO2/Si (100) and Si (100) singlecrystal substrates at different temperatures of 600, 700 and 800C. In all samples, the external magnetic field produced by a permanent magnet has been used to improve and control the intensity of the laser plume. X-ray diffraction analysis showed that the L1 crystal structure was created and the long-range order parameter increased from near 0.6 to a maximum of 0.98 in films grown at 800C for two types of films. The increasing of stress in FePt/Si (100) thin films due to the lattice mismatch leads to the change of surface morphology from the island-like mode with grain separation to interconnected grains that have a tendency to grow in a specific direction. Moreover, the roughness of the surface increased by increasing the lattice mismatch and temperature. In addition, the maximum value (over 9400 Oe) of coercivity was obtained by increasing the temperature to 800C using SiO2/Si (100) substrate. All series of films grown on SiO2/Si (100) show a large K u of 10.2×107 erg/cm3at the temperature of 800C.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10


  1. 1.

    Weller, D., Moser, A., Folks, L., Best, M.E., Lee, W., Toney, M.F., Schwickert, M., Thiele, J.U., Doerner, M.F.: High Ku materials approach to 100 Gbits/in2. IEEE Trans. Magn. 36(1), 10–15 (2000)

    ADS  Article  Google Scholar 

  2. 2.

    Seki, T.O., Takahashi, Y.K., Hono, K.: Microstructure and magnetic properties of FePt-SiO2 granular films with Ag addition. J. Appl. Phys. 103(2), 23910–23910 (2008)

    Article  Google Scholar 

  3. 3.

    Richter, H.J., Harkness, S.D.: Media for magnetic recording beyond 100Gbit/in2. MRS Bulletin 31(05), 384–388 (2006)

    Article  Google Scholar 

  4. 4.

    Sun, S., Murray, C.B., Weller, D., Folks, L., Moser, A.: Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 287(5460), 1989–1992 (2000)

    ADS  Article  Google Scholar 

  5. 5.

    Piramanayagam, S.N.: Perpendicular recording media for hard disk drives. J. Appl. Phys. 102(1), 011301 (2007)

    ADS  Article  Google Scholar 

  6. 6.

    Moser, A., Takano, K., Margulies, D.T., Albrecht, M., Sonobe, Y., Ikeda, Y., Sun, S., Fullerton, E.E.: Magnetic recording: advancing into the future. J. Phys. D. Appl. Phys. 35(19), R157 (2002)

    ADS  Article  Google Scholar 

  7. 7.

    Zhang, L., Xue, S.X., Li, Z.G., Liu, Y.P., Chen, W.P.: FePt-C Granular thin film for heat-assisted magnetic recording (HAMR) media. Applied Physics A: Materials Science and Processing 116(3), 1257–1260 (2014)

    ADS  Article  Google Scholar 

  8. 8.

    Seki, T., Shima, T., Takanashi, K., Takahashi, Y., Matsubara, E., Hono, K.: Optimum Compositions for the low-temperature fabrication of highly ordered FePt [001] and FePt [110] films. IEEE Trans. Magn. 40(4), 2522–2524 (2004)

    ADS  Article  Google Scholar 

  9. 9.

    Chen, S.C., Chen, C.D., Sun, T.H., Ou, S.L., Shen, C.L, Su, W.H.: Effect of Pt Content on structure and magnetic properties of Fe100−xPtx films deposited on thermally oxidized Si substrates by rapid thermal annealing. Vacuum 87, 205–208 (2013)

    ADS  Article  Google Scholar 

  10. 10.

    Yang, E., Laughlin, D.E.: L10 FePt-oxide columnar perpendicular media with high coercivity and small grain size. J. Appl. Phys. 104(2), 23904–23904 (2008)

    Article  Google Scholar 

  11. 11.

    Varvaro, G., Laureti, S., Fiorani, D.: L10 FePt-based thin films for future perpendicular magnetic recording media. J. Magn. Magn. Mater. 368, 415–420 (2014)

    ADS  Article  Google Scholar 

  12. 12.

    Speliotis, T., Varvaro, G., Testa, A.M., Giannopoulos, G., Agostinelli, E., Li, W., Hadjipanayis, G., Niarchos, D.: Microstructure and magnetic properties of (001) textured L10 FePt films on amorphous glass substrate. Appl. Surf. Sci. 337, 118–124 (2015)

    ADS  Article  Google Scholar 

  13. 13.

    Kaushik, N., Sharma, P., Tanaka, S., Makino, A., Esashi, M.: Preferentially oriented growth of L10 FePt on Si substrate. Acta Physica Polonica A 127(2), 611–613 (2015)

    Article  Google Scholar 

  14. 14.

    Richter, H.J.: The transition from longitudinal to perpendicular recording. J. Phys. D. Appl. Phys. 40(9), R149 (2007)

    ADS  Article  Google Scholar 

  15. 15.

    Laughlin, D.E., Kumar, S., Peng, Y., Roy, A.G.: Engineering the microstructure of thin films for perpendicular recording. IEEE Trans. Magn. 41(2), 719–723 (2005)

    ADS  Article  Google Scholar 

  16. 16.

    Lai, C.H., Chiang, C.C., Yang, C.H.: Low-temperature ordering of FePt by formation of silicides in underlayers. J. Appl. Phys. 97(10), 10H310-1–10H310-3 (2005)

    Article  Google Scholar 

  17. 17.

    Thomson, T., Toney, M.F., Raoux, S., Baglin, J.E.E., Lee, S.L., Terris, B.D., Sun, S.: Silicide formation and particle size growth in high temperature annealed, self-assembled FePt nanoparticles (No SLAC-PUB-10213) (2003)

  18. 18.

    Lim, B.C., Chen, J.S., Wang, J.P.: Thickness dependence of structural and magnetic properties of FePt films. J. Magn. Magn. Mater. 271(2), 431–436 (2004)

    ADS  Article  Google Scholar 

  19. 19.

    Takahashi, Y.K., Ohnuma, M., Hono, K.: Ordering process of sputtered FePt films. J. Appl. Phys. 93 (10), 7580–7582 (2003)

    ADS  Article  Google Scholar 

  20. 20.

    Gutfleisch, O., Lyubina, J., Müller, K.H., Schultz, L.: FePt hard magnets. Adv. Eng. Mater. 7(4), 208–212 (2005)

    Article  Google Scholar 

  21. 21.

    Laughlin, D.E., Srinivasan, K., Tanase, M., Wang, L.: Crystallographic aspects of L10 magnetic materials. Scr. Mater. 53(4), 383–388 (2005)

    Article  Google Scholar 

  22. 22.

    Zhang, A.M., Zhu, W.H., Zheng, L., Huang, L., Gao, J.L., Tang, S.L., Wu, X.S.: Magnetic anisotropy of L10-FePt film on (001) LaAlO3. J. Magn. Magn. Mater. 332, 89–92 (2013)

    ADS  Article  Google Scholar 

  23. 23.

    Dong, K., Jin, F., Mo, W., Song, J., Cheng, W.: Investigation of microstructure and magnetic properties of FePtx films grown on MgO and STO substrates. J. Magn. Magn. Mater. 402, 124130 (2016)

    Article  Google Scholar 

  24. 24.

    Dong, K., Jin, F., Mo, W., Song, J., Cheng, W.: Investigation of microstructure and magnetic properties of FePt films grown on different substrates. Mater. Lett. 164, 97103 (2016)

    Article  Google Scholar 

  25. 25.

    Dong, K.F., Li, H.H., Chen, J.S.: Lattice mismatch-induced evolution of microstructural properties in FePt films. J. Appl. Phys. 113(23), 233904 (2013)

    ADS  Article  Google Scholar 

  26. 26.

    Hotta, A., Ono, T., Hatayama, M., Tsumura, K., Kikuchi, N., Okamoto, S., Kitakami, O., Shimatsu, T.: Magnetic anisotropy and order structure of L10-FePt (001) single-crystal films grown epitaxially on (001) planes of MgO, SrTiO3, and MgAl2 O 4 substrates. Journal of Applied Physics 115(17), 17B712 (2014)

    Article  Google Scholar 

  27. 27.

    Iwama, H., Doi, M., Shima, T.: Magnetization behavior of L10-ordered FePt alloy thin films prepared on MgO (100), MgAl2 O 4 (100), and KTaO3 (100) single-crystal substrates. Jpn. J. Appl. Phys. 55(7S3), 07MC03 (2016)

    Article  Google Scholar 

  28. 28.

    Shen, C.L., Kuo, P.C., Lin, G.P., Chen, S.C., Huang, K.T.: Effect of film thickness on magnetic properties of FePt thin films deposited on amorphous substrate directly. IEEE Trans. Med. Imaging 47(10), 3889–3892 (2011)

    ADS  Google Scholar 

  29. 29.

    Wu, Y.C., Wang, L.W., Lai, C.H.: Low-temperature ordering of (001) granular FePt films by inserting ultrathin SiO2 layers. Appl. Phys. Lett. 91(7), 2502 (2007)

    Google Scholar 

  30. 30.

    Wang, Y.C., Ding, J., Yi, J.B., Liu, B.H., Yu, T., Shen, Z.X.: High-coercivity Co-ferrite thin films on (100)-SiO2 substrate. Appl. Phys. Lett. 84(14), 2596–2598 (2004)

    ADS  Article  Google Scholar 

  31. 31.

    Trichy, G.R., Chakraborti, D., Narayan, J., Zhou, H.: Growth, characterization, and magnetic properties of FePt nanodots on Si (100). J. Appl. Phys. 102(3), 033901 (2007)

    ADS  Article  Google Scholar 

  32. 32.

    Jang, P., Jung, C.S., Seomoon, K., Kim, K.H.: Interfacial structure of ferromagnetic Fe-Pt thin films grown on a Si substrate. Curr. Appl. Phys. 11(4), S95–S97 (2011)

    Article  Google Scholar 

  33. 33.

    Maaß, R., Weisheit, M., Fähler, S., Schultz, L.: Influence of hydrogen on the growth of FePt thin films. J. Appl. Phys. 100(7), 073910 (2006)

    ADS  Article  Google Scholar 

  34. 34.

    Mo, X., Xiang, H., Li, G., Chen, P., Xiong, Z., Wang, J., Ishio, S., Saito, H., Shima, T., Takanashi, K.: Magnetic properties of perpendicularly orientated L10 FePt nanoparticles. Chin. Sci. Bull. 55(8), 680–686 (2010)

    Article  Google Scholar 

  35. 35.

    Rao, S.S., Prater, J.T., Wu, F., Nori, S., Kumar, D., Narayan, J.: Integration of epitaxial permalloy on Si (100) through domain matching epitaxy paradigm. Curr. Opinion Solid State Mater. Sci. 18(1), 1–5 (2014)

    ADS  Article  Google Scholar 

  36. 36.

    Chen, S.C., Kuo, P.C., Lee, C.T., Sun, A.C., Chou, C.Y., Fang, Y.H.: Effects of CrRu underlayer and CrRu capped layer on the microstructure and magnetic properties of FePt films. IEEE Trans. Magn. 43(2), 876–878 (2007)

    ADS  Article  Google Scholar 

  37. 37.

    Kim, H., Noh, J.S., Roh, J.W., Chun, D.W., Kim, S., Jung, S.H., Kang, H.K., Jeong, W.Y., Lee, W.: Perpendicular magnetic anisotropy in FePt patterned media employing a CrV seed layer. Nanoscale Res. Lett. 6(1), 1 (2010)

    Google Scholar 

  38. 38.

    Lai, Y.C., Chang, Y.H., Chen, Y.C., Liang, C.H., Chang, W.C., Chiou, C.M., Chen, G.J.: Inductive magnetization of low-temperature ordered L10-FePt with CoAg underlayer. J. Appl. Phys. 101(5), 053913 (2007)

    ADS  Article  Google Scholar 

  39. 39.

    Sun, H.Y., Xu, J.L., Feng, S.Z., Su, Z.F., Hu, J., Sun, Y.P.: Magnetic properties and microstructures of FePt/Ti bilayer films sputter deposited onto glass amorphous substrates. Appl. Phys. Lett. 88(19), 2501 (2006)

    ADS  Google Scholar 

  40. 40.

    Lin, J.J., Zhang, T., Lee, P., Springham, S.V., Tan, T.L., Rawat, R.S., White, T., Ramanujan, R., Guo, J.: Magnetic trapping induced low temperature phase transition from fcc to fct in pulsed laser deposition of FePt: Al2 O 3 nanocomposite thin films. Appl. Phys. Lett. 91(6), 063120 (2007)

    ADS  Article  Google Scholar 

  41. 41.

    Chang, H.W., Yuan, F.T., Yuan, C.W., Yu, C.H., Wang, C.R., Chang, W.C.: Effect of magnetic field on the structure and magnetic properties of pulse-laser-deposited FePt films. J. Alloys Compd. 584, 148–151 (2014)

    Article  Google Scholar 

  42. 42.

    Sternik, M., Couet, S., ŁaŻewski, J., Jochym, P.T., Parlinski, K., Vantomme, A., Temst, K., Piekarz: Dynamical properties of ordered FePt alloys. J. Alloys Compnd. 651, 528–536 (2015)

    Article  Google Scholar 

  43. 43.

    Kaushik, N., Sharma, P., Yubuta, K., Makino, A., Inoue, A.: Domain wall assisted magnetization switching in (111) oriented L10 FePt grown on a soft magnetic metallic glass. Appl. Phys. Lett. 97(7), 072510–3 (2010)

    ADS  Article  Google Scholar 

  44. 44.

    Dannenberg, A., Gruner, M.E., Hucht, A., Entel, P.: Surface energies of stoichiometric FePt and CoPt alloys and their implications for nanoparticle morphologies. Phys. Rev. B 80(24), 245438 (2009)

    ADS  Article  Google Scholar 

  45. 45.

    Cullity, B.D., Stock, S.R.: Elements of X-ray diffraction, pp 1–664. Prentice Hall Inc., New Jersey (2001)

    Google Scholar 

  46. 46.

    Kim, J.S., Koo, Y.M., Lee, B.J., Lee, S.R.: The origin of (001) texture evolution in FePt thin films on amorphous substrates. J. Appl. Phys. 99(5), 053906 (2006)

    ADS  Article  Google Scholar 

  47. 47.

    Goswami, R., Cheng, S.F., Qadri, S.B., Oh, E., Bussmann, K.: TEM studies of microstructure, interfaces, and intermixing of FePt/MgO/FePt/Pt/Cr (Ru) films. J. Nanoparticle Res. 15(4), 1–7 (2013)

    Article  Google Scholar 

  48. 48.

    Chen, S.C., Kuo, P.C., Kuo, S.T., Sun, A.C., Lie, C.T., Chou, C.Y.: Effects of Ti underlayer on the degree of order of Fe50Pt50 films. Mater. Sci. Eng. B 98(3), 244–247 (2003)

    Article  Google Scholar 

  49. 49.

    Shima, T., Moriguchi, T., Mitani, S., Takanashi, K.: Low-temperature fabrication of L10 ordered FePt alloy by alternate monatomic layer deposition. Appl. Phys. Lett. 80(2), 288–290 (2002)

    ADS  Article  Google Scholar 

  50. 50.

    Granz, S.D., Kryder, M.H.: Granular L10 FePt (001) Thin films for heat assisted magnetic recording. J. Magn. Magn. Mater. 324(3), 287–294 (2012)

    ADS  Article  Google Scholar 

  51. 51.

    Barmak, K., Wang, B., Jesanis, A.T., Berry, D.C., Rickman, J.M.: L10 FePt: Ordering, anisotropy constant and their relation to film composition. IEEE Trans. Magn. 49(7), 3284–3291 (2013)

    ADS  Article  Google Scholar 

  52. 52.

    Hsiao, S.N., Liu, S.H., Chen, S.K., Lee, H.Y.: Effect of annealing process on strain-induced crystallographic orientation of FePt thin films. IEEE Trans. Magn. 48(11), 4014–4017 (2012)

    ADS  Article  Google Scholar 

  53. 53.

    Yang, E., Laughlin, D.E., Zhu, J.G.: Correction of order parameter calculations for FePt perpendicular thin films. IEEE Trans. Magn. 48(1), 7–12 (2012)

    ADS  Article  Google Scholar 

  54. 54.

    Weisheit, M., Schultz, L., Fähler, S.: Textured growth of highly coercive L10 ordered FePt thin films on single crystalline and amorphous substrates. J. Appl. Phys. 95(11), 7489–7491 (2004)

    ADS  Article  Google Scholar 

  55. 55.

    Brune, H.: Microscopic view of epitaxial metal growth: nucleation and aggregation. Surf. Sci. Rep. 31(4), 125–229 (1998)

    ADS  Article  Google Scholar 

  56. 56.

    Dong, K.F., Jin, F., Mo, W.Q., Song, J.L., Cheng, W.M.: Improvement of isolation and grain size of FePt-SiNx-C films with TiON intermediate layer. J. Alloys Compd. 662, 138–142 (2016)

    Article  Google Scholar 

  57. 57.

    Kim, C.S., Sapan, J.J., Moyerman, S., Lee, K., Fullerton, E.E., Kryder, M.H.: Thickness and temperature effects on magnetic properties and roughness of ordered FePt films. IEEE Trans. Magn. 46(6), 2282–2285 (2010)

    ADS  Article  Google Scholar 

  58. 58.

    Floro, J.A., Hearne, S.J., Hunter, J.A., Kotula, P., Chason, E., Seel, S.C., Thompson, C.V: The dynamic competition between stress generation and relaxation mechanisms during coalescence of Volmer–Weber thin films. J. Appl. Phys. 89(9), 4886–4897 (2001)

    ADS  Article  Google Scholar 

  59. 59.

    Thornton, J.A.: Influence of substrate temperature and deposition rate on structure of thick sputtered Cu coatings. J. Vac. Sci. Technol. 12(4), 830–835 (1975)

    ADS  Article  Google Scholar 

  60. 60.

    Christodoulides, J.A., Bonder, M.J., Huang, Y., Zhang, Y., Stoyanov, S., Hadjipanayis, G.C., Simopoulos, A., Weller, D.: Intrinsic and hysteresis properties of FePt nanoparticles. Phys. Rev. B 68(5), 054428 (2003)

    ADS  Article  Google Scholar 

  61. 61.

    Ahn, S.M., Beach, G.S.D.: Crossover between in-plane and perpendicular anisotropy in Ta/CoxFe100−x/MgO films as a function of Co composition. J. Appl. Phys. 113(17), 17C112 (2013)

    Article  Google Scholar 

  62. 62.

    Honda, N., Ouchi, K., Iwasaki, S.I.: Design consideration of ultrahigh-density perpendicular magnetic recording media. IEEE Trans. Magn. 38(4), 1615–1621 (2002)

    ADS  Article  Google Scholar 

  63. 63.

    Tagawa, I., Takeo, A., Nakamura, Y.: Numerical analysis of noise and inter-particle interaction in perpendicular magnetic recording media. J. Magn. Magn. Mater. 155(1), 341–344 (1996)

    ADS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to P. Kameli.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mokhtari, P., Kameli, P., Ehsani, M.H. et al. Microstructure and Magnetic Properties of FePt Thin Films on SiO2/Si (100) and Si Substrates Prepared Under External Magnetic Field. J Supercond Nov Magn 30, 1949–1961 (2017). https://doi.org/10.1007/s10948-017-3998-4

Download citation


  • FePt thin film
  • Pulsed laser deposition
  • Coercivity
  • Surface morphology