Skip to main content
Log in

The Effects of Structural, Thermal, and Magnetic Properties of Hexylbenzene-Doped MgB2 Superconductor

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

The effects of the amount of hexylbenzene additive (C12H18) on the structural, thermal, and magnetic properties of MgB2 superconductor are examined in this study. Pure and hexylbenzene-doped MgB2 bulk samples were produced with in situ solid-state reaction method. X-ray diffraction patterns of MgB2 doped with MgB2 and hexylbenzene at different ratios were determined to have MgB2 as the main phase and consisted of a small amount of MgO. Pure and different ratios of hexylbenzene-doped Mg and B starting powders were heat-treated by a differential scanning calorimeter between room temperature and 800 °C. It was determined from the differential scanning calorimetry curves obtained that the first exothermic peak pointed the MgB2 phase emerging with a solid–solid (Mg–B) reaction, and this temperature shifted towards the low temperatures as the hexylbenzene addition rates increased. It was observed that there was dependency to the applied field in all samples from the ac susceptibility measurements as a function of the temperature in pure and hexylbenzene-doped MgB2 superconductor materials, and shift towards the lower temperatures in T c, superconducting transition temperature, with increasing content. It was observed that the changes occurred in in-phase (\(\chi ^{\prime })\) and out-off-phase (\(\chi ^{\prime \prime }\)) components of ac susceptibility both weakened the MgB2 phase structure of hexylbenzene content and, as a result of this, led to changes in the pinning mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Nagamatsu, J., Nakagawa, N., Muranaka, T., Zenitani, Y., Akimitsu, J.: Nature 410, 63 (2001)

    Article  ADS  Google Scholar 

  2. Dou, S.X., Soltanian, S., Horvat, J., Wang, X.L., Zhou, S.H., Ionescu, M., Liu, H.K., Munroe, P., Tomsic, M.: Appl. Phys. Lett. 81, 3419–3421 (2002)

    Article  ADS  Google Scholar 

  3. Kumakura, H., Kitaguchi, H., Matsumoto, A., Hatekayama, H.: Appl. Phys. Lett. 84, 3669–3671 (2004)

    Article  ADS  Google Scholar 

  4. Sumption, M.D., Bhatia, M., Dou, S.X., Rindfliesch, M., Tomsic, M., Arda, L., Ozdemir, M., Hascicek, Y., Collings, E.W.: Supercond. Sci. Technol. 17, 1180–1184 (2004)

    Article  ADS  Google Scholar 

  5. Wilke, R.H.T., Bud’ko, S.L., Canfield, P.C., Finnemore, D.K., Suplinskas, R.J., Hannahs, S.T.: Phys. Rev. Lett. 92, 217003 (2004)

    Article  ADS  Google Scholar 

  6. Yeoh, W.K., Kim, J.H., Horvat, J., Xu, X., Qin, M.J., Dou, S.X., Jiang, C.H., Nakane, T., Kumakura, H., Munroe, P.: Supercond. Sci. Technol. 19, 596–599 (2006)

    Article  ADS  Google Scholar 

  7. Kim, J.H., Yeoh, W.K., Qin, M.J., Xu, X., Dou, S.X.: J. Appl. Phys. 100, 013908 (2006)

    Article  ADS  Google Scholar 

  8. Yamada, H., Hirakawa, M., Kumakura, H., Kitaguchi, H.: Supercond. Sci. Technol. 19, 175–177 (2006)

    Article  ADS  Google Scholar 

  9. Babaoğlu Meral, G., Serap, S., Özlem, Ç., Hasan, A., Ercan, E., Md, H., Shahriar, A., Ekrem, Y., Ali, G.: J. Magn. Magn. Mater. 324(21), 3455–3459 (2012)

    Article  ADS  Google Scholar 

  10. Kim, J.H., Zhou, S., Hossain, M.S.A., Pan, A.V., Dou, S.X.: Appl. Phys. Lett. 89, 142505 (2006)

    Article  ADS  Google Scholar 

  11. Hossain, M.S.A., Kim, J.H., Xu, X., Wang, X.L., Rindfleisch, M., Tomsic, M., Sumption, M.D., Collings, E.W., Dou, S.X.: Supercond. Sci. Technol. 20, L51–L54 (2007)

    Article  ADS  Google Scholar 

  12. Ağl, H., Çiçek, Ö., Ertekin, E., Motaman, A., Hossain, M.S.A., Dou, S.X., Gencer, A.: J. Supercond. Novel Magn. 26(5), 1525–1529 (2013)

    Article  Google Scholar 

  13. Kazakov, S.M., Puzniak, R., Rogacki, K., Mironov, A.V., Zhigadlo, N.D., Jun, J., Soltmann, C. h., Batlogg, B., Karpinski, J.: Phys. Rev. B 71, 024533 (2005)

  14. Senkowicz, B.J., Giencke, J.E., Patnaik, S., Eom, C.B., Hellstrom, E.E., Larbalestier, D.C.: Appl. Phys. Lett. 86, 202502 (2005)

  15. Bean, C.P.: Rev. Mod. Phys. 36, 31–39 (1964)

    Article  ADS  Google Scholar 

  16. Kimishima, Y., Takami, S., Okuda, T., Uehara, M., Kuramoto, T., Sugiyama, Y.: Phys. C 281-285, 463–465 (2007)

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Research Fund of Hakkari University, Hakkari, Turkey, under grant contract no. MF2014BAP2, and by the Republic of Turkey, Ministry of Development, under the project number 2010K120520.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hasan Ağıl.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ağıl, H., Aksu, E., Aktürk, S. et al. The Effects of Structural, Thermal, and Magnetic Properties of Hexylbenzene-Doped MgB2 Superconductor. J Supercond Nov Magn 30, 1727–1736 (2017). https://doi.org/10.1007/s10948-017-3982-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-017-3982-z

Keywords

Navigation