Skip to main content
Log in

Electrical and Dielectric Properties of Y3+-Substituted Barium Hexaferrites

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

In this study, Y3+ ion-substituted M-type barium hexaferrites (BaM; BaFe12O19) were fabricated via facile ceramic route. As-prepared powders were characterized by X-ray powder diffractometry (XRD), Fourier transform infrared (FT-IR) spectroscopy, and impedance spectroscopy. XRD (Rietveld) analyses confirmed the presence of a single characterization of all samples (except x = 0.0 and 0.1 samples). The crystallite sizes of products are found in the range of 47.2–63.2 nm. Spectral analysis (FT-IR) also presented the formation of spinel structure for all products. The ac conductivity of the substituted samples was found to initially decrease slightly with increase in Y3+ compared with unsubstituted, and then variation tendency changes at the medium substitution ranges are observed with a different attitude against temperature. In the end, the lower conductivity for high substitutions is recorded and increases as functions of frequency while it also increases with the elevation of temperature. It was observed that ac conductivities of products increased by increasing frequency which indicate that observed ac conductivity is due to both electronic and polaron hopping mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Auwal, I.A., Baykal, A., Güngüneş, H., Shirsath, S.E.: Structural investigation and hyperfine interactions of BaBi x La x Fe12−2x O19 (0.0 = x = 0.5) hexaferrites. Ceram. Int. 42, 3380–3387 (2016)

    Article  Google Scholar 

  2. Ashiq, M.N., Iqbal, M.J., Gul, I.H.: Effect of Al–Cr doping on the structural, magnetic and dielectric properties of strontium hexaferrite nanomaterials. J. Magn. Magn. Mater 323, 259–263 (2011)

    Article  ADS  Google Scholar 

  3. Pullar, R.C.: Hexagonal ferrites: A review of the synthesis, properties and applications of hexaferrite ceramics. Prog. Mater. Sci. 57, 1191–1334 (2012)

    Article  Google Scholar 

  4. Auwal, I.A., Güngüneş, H., Baykal, A., Güner, S., Shirsath, S.E., Sertkol, M.: Structural, morphological, optical, cation distribution and Mössbauer analysis of Bi3 + substituted strontium hexaferrite. Ceram. Intern. 42, 8627–8635 (2016)

    Article  Google Scholar 

  5. El-Sayed, S.M., Meaz, T.M., Amer, M.A., El Shersaby, H.A.: Magnetic behavior and dielectric properties of aluminum substituted M-type barium hexaferrite. Physica B: Cond. Matter 426, 137–143 (2013)

    Article  ADS  Google Scholar 

  6. Shakoor, S., Ashiq, M.N., Malana, M.A., Mahmood, A., Warsi, M.F., Najam-ul-Haq, M., Karamat, N.: Electrical, dielectric and magnetic characterization of Bi–Cr substituted M-type strontium hexaferrite nanomaterials. J. Magn. Magn. Mater 362, 110–114 (2014)

    Article  ADS  Google Scholar 

  7. Smit, J., Wijn, H.: Ferrites. Wiley, New York (1959)

    Google Scholar 

  8. Katlakunta, S., Meena, S.S., Srinath, S., Bououdina, M., Sandhya, R., Praveena, K.: Improved magnetic properties of Cr 3 + doped SrFe12O19 synthesized via microwave hydrothermal route. Mater. Res. Bull. 63, 58–66 (2015)

    Article  Google Scholar 

  9. Auwal, I.A., Ünal, B., Güngüneş, H., Shirsath, S.E., Baykal, A.: Dielectric properties, cationic distribution calculation and hyperfine interactions of La3 + and Bi3 + doped strontium hexaferrites. Ceram. Int. 42, 9100–9115 (2016)

    Article  Google Scholar 

  10. Shepherd, P., Mallick, K.K., Green, R.J.: Magnetic and structural properties of M-type barium hexaferrite prepared by co-precipitation. J. Magn. Magn. Mater 311, 683–692 (2007)

    Article  ADS  Google Scholar 

  11. Iqbal, M.J., Ashiq, M.N.: Physical and electrical properties of Zr–Cu substituted strontium hexaferrite nanoparticles synthesized by co-precipitation method. Chem. Eng. J. 136, 383–389 (2008)

    Article  Google Scholar 

  12. Nedkov, I., Petkov, A., Karpov, V.: Microwave absorption in Sc- and CoTi-substituted Ba hexaferrite powders. IEEE Trans. Magn. 26, 1483–1484 (1990)

    Article  ADS  Google Scholar 

  13. Topkaya, R., Auwal, I., Baykal, A.: Effect of temperature on magnetic properties of BaYxFe12−x O19 hexaferrites. Ceram. Int. 42, 16296–16302 (2016)

    Article  Google Scholar 

  14. Kaur, T., Kaur, B., Bhat, B.H., Kumar, S., Srivastava, A.: Effect of calcination temperature on microstructure, dielectric, magnetic and optical properties of Ba0.7La0.3Fe11.7Co0.3O19 hexaferrites. Physica B: Cond. Matter 456, 206–212 (2015)

    Article  ADS  Google Scholar 

  15. Auwal, I.A., Güngüneş, H., Güner, S., Shirsath, S.E., Sertkol, M., Baykal, A.: Structural, magneto-optical properties and cation distribution of SrBi x La x Y x Fe12−3x O19 (0.0 = x = 0.33) hexaferrites. Mater. Res. Bull./ 80, 263–272 (2016)

    Article  Google Scholar 

  16. Toby, B.H.: Powder Diff. 21, 67 (2006)

    Article  ADS  Google Scholar 

  17. Wagner, T.: Preparation and crystal structure analysis of magnetoplumbite-type BaGa12O19. J. Solid State Chem. 136, 120–124 (1998)

    Article  ADS  Google Scholar 

  18. Auwal, I.A., Güner, S., Güngüneş, H., Baykal, A.: Sr1−x La x Fe12O19 (0.0 = x = 0.5) hexaferrites: Synthesis, characterizations, hyperfine interactions and magneto-optical properties. Ceram. Int.

  19. Denton, A.R., Ashcroft, N.W.: Vegard’s law. Phys. Rev. A 43, 3161 (1991)

    Article  ADS  Google Scholar 

  20. Durmus, Z., Unal, B., Toprak, M.S., Aslan, A., Baykal, A.: Synthesis and characterization of poly(1-vinyl-1,2,4-triazole) (PVTri)–barium hexaferrite nanocomposite. Phys. B 406, 2298–2302 (2011)

    Article  ADS  Google Scholar 

  21. Baykal, A., Durmus, Z., Toprak, M.S., Sozeri, H.: Synthesis and characterization of PEG-Sr hexaferrite by Sol–Gel conversion. J. Supercond. Nov. Magn. 25, 2003–2008 (2012)

    Article  Google Scholar 

  22. Baykal, A.: Solvothermal synthesis of pure SrFe12O19 hexaferrite nanoplatelets. J Supercond. Nov. Magn. 27, 877–880 (2014)

    Article  Google Scholar 

  23. Alange, R.C., Khirade, P.P., Birajdar, S.D., Humbe, A.V., Jadhav, K.M.: Structural, magnetic and dielectrical properties of Al–Cr Co-substituted M-type barium hexaferrite nanoparticles. J. Mol. Struct. 1106, 460–467 (2016)

    Article  ADS  Google Scholar 

  24. Miller, F.A., Wilkins, C.H.: Infrared spectra and characteristic frequencies of inorganic ions. Anal. Chem. 24, 1253–1294 (1952)

    Article  Google Scholar 

  25. El-Sayed, S.M., Meaz, T.M., Amer, M.A., El Shersaby, H.A.: Magnetic behavior and dielectric properties of aluminum substituted M-type barium hexaferrite. Physica B: Cond. Matter 426, 137–143 (2013)

    Article  ADS  Google Scholar 

  26. Irvine, J.T.S., Sinclair, D.C., West, A.R.: Electroceramics: Characterization by impedance spectroscopy. Adv. Mater. 2(3), 132–138 (1990)

    Article  Google Scholar 

  27. Abo El Ata, A.M., El Nirma, M.K., Attia, S.M., El Kony, D., Al-Hammadi, A.H.: Studies of AC electrical conductivity and initial magnetic permeability of rare-earth-substituted Li–Co ferrites. J. Magn. Magn. Mater. 297, 33–43 (2006)

    Article  ADS  Google Scholar 

  28. Unal, B., Durmus, Z., Kavas, H., Baykal, A., Toprak, M.S.: Synthesis, conductivity and dielectric characterization of salicylic acid-Fe3O4 nanocomposite. Mater. Chem. Phys. 123, 184–190 (2010)

    Article  Google Scholar 

  29. Ünal, B., Baykal, A.: Effect of Zn substitution on electrical properties of nanocrystalline cobalt ferrite. J. Supercond. Nov. Magn. 27, 469–479 (2014)

    Article  Google Scholar 

  30. Vinnik, D.A., Tarasova, A.Y., Zherebtsov, D.A., Mashkovtseva, L.S., Gudkova, S.A., Nemrava, S., Yakushechkina, A.K., Semisalova, A.S., Isaenko, L.I., Niewa, R.: Cu-substituted barium hexaferrite crystal growth and characterization. Ceram. Int. 41, 9172–9176 (2015)

    Article  Google Scholar 

  31. Petrila, I., Tudorache, F.: Influence of partial substitution of Fe3+ with W3+ on the microstructure, humidity sensitivity, magnetic and electrical properties of barium hexaferrite. Superlatt. Microstruct. 70, 46–53 (2014)

    Article  ADS  Google Scholar 

  32. Kumari, N., Kumarn, V., Singh, S.K.: Synthesis, structural and dielectric properties of Cr3 + substituted Fe3O4 nano-particles. Ceram. Int. 40, 12199–12205 (2014)

    Article  Google Scholar 

  33. Rezlescu, N., Rezlescu, E.: Dielectric properties of copper containing ferrites. Phys. Stat. Sol. (a) 23, 575 (1974)

    Article  ADS  Google Scholar 

  34. Abo El Ata, A.M., Ahmed, M.A.: Dielectric and ac conductivity for BaCo2−x Cu x Fe16O27 ferrites. J. Magn. Magn. Mater 208 (2000)

  35. Bao, J., Zhou, J., Yue, Z., Li, L., Gui, Z.: Dielectric behavior of Mn-substituted Co2Z hexaferrites. J. Magn. Magn. Mater 250, 131–137 (2002)

    Article  ADS  Google Scholar 

  36. Verwey, E.J.W.: F. de Boer, J.H. van Santen: Cation arrangement in spinels. J. Chem. Phys. 16, 1091–1092 (1948)

    Article  ADS  Google Scholar 

  37. Sanghi, S., Agarwal, A.: Rietveld refinement, electrical properties and magnetic characteristics of Ca–Sr substituted barium hexaferrites. J. Alloy Compd. 513, 436–444 (2012)

    Article  Google Scholar 

  38. Venkataraju, C., Satishkumar, G., Sivakumar, K.: Effect of bismuth on the properties of Mn ferrite nanoparticles prepared by co-precipitation method. J. Mater. Sci. Mater. Electron 23, 1163–1168 (2012)

    Article  Google Scholar 

  39. Pal, M., Brahma, P., Chakravorty, D.: Magnetic and electrical properties of nickel-zinc ferrites doped with bismuth oxide. J. Magn. Magn. Mater. 152, 370–374 (1996)

    Article  ADS  Google Scholar 

  40. Fayek, M.K., Ata-Allah, S.S., Kh Roumaih, S.: Ismail: Thermoelectric power properties of Zn substituted Cu-Ga spinel ferrites. Mater. Lett 63, 1010–1012 (2009)

    Article  Google Scholar 

  41. Verma, S., Chand, J., Singh, M.: Structural and electrical properties of Al3+ ions doped nano-crystalline Mg0.2Mn0.5Ni0.3AlyFe2−y O4 ferrites synthesized by citrate precursor method. J. Alloy Compd. 587, 763–770 (2014)

    Article  Google Scholar 

  42. Klinger, M.I.: Two phase polaron model of conduction in magnetite-like solids. J. Phys C8, 3595 (1975)

    ADS  Google Scholar 

  43. Sözeri, H., Baykal, A., Ünal, B.: Low temperature synthesis of single domain Sr-hexaferrite particles by solid state reaction route. Physica Status Solidi A 209, 2002–2013 (2012)

    Article  ADS  Google Scholar 

  44. Baykal, A., Demir, M., Ünal, B., Sözeri, H., Toprak, M.S.: Synthesis, characterization, and dielectric properties of BaFe10(Mn2+Zn2+Zn2+)O19 hexaferrite. J Supercond Nov Magn 29, 199–205 (2016)

    Article  Google Scholar 

  45. Amir, M., Ünal, B., Geleri, M., Güngüneş, H., Shirsath, S.E., Baykal, A.: Electrical properties and hyperfine interactions of boron doped Fe3O4 nanoparticles. Superlattices and Microstructures 88, 450–466 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

Dr. Yıldız would like to thank Namık Kemal University (NKUBAP.06.GA.16.047).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Baykal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Auwal, I.A., Ünal, B., Baykal, A. et al. Electrical and Dielectric Properties of Y3+-Substituted Barium Hexaferrites. J Supercond Nov Magn 30, 1813–1826 (2017). https://doi.org/10.1007/s10948-017-3978-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-017-3978-8

Keywords

Navigation