Skip to main content
Log in

High-Temperature Magnetic Behaviour of 10 % Aluminium-Substituted Cobalt Ferrite

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Magnetic studies on aluminum-substituted cobalt ferrite nanoparticles (CoFe1.9Al0.1 O 4) of average particle size ∼20 nm in the broad range of temperature varying from room temperature (300 K) to 900 K has been presented. The temperature dependence of DC magnetization curve exhibits paramagnetic to ferrimagnetic transition at ∼736 K. Zero field cooling and field cooling magnetization measurement shows that the blocking temperature is far above the room temperature. The presence of ferrimagnetic order in the sample has been analyzed by Arrott plot technique for M-H data measured over the temperature range 300–900 K in the magnetic field of ±9 T. The magnetocrystalline anisotropy constant was determined by employing the “law of approach (LA) to saturation” theory. The saturation magnetization, magnetocrystalline anisotropy constant and coercivity are found to decrease with the increase in temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Toksha, B.G., Shirsath, S.E., Mane, M.L., Patange, S.M., Jadhav, S.S., Jadhav, K.M.: Auto combustion high-temperature synthesis, structure and magnetic properties of CoCrxFe2−x O 4 (0 ≤x≤1.0). J. Phys. Chem. C 115 (2011)

  2. Haneda, K., Morrish, A.H.: Non collinear magnetic structure, structure of CoFe2 O 4. J. Appl. Phys. 63, 4258 (1988)

    Article  ADS  Google Scholar 

  3. Franco Jr. A., e Silva, F.C.: High temperature magnetic properties of cobalt ferrite nanoparticles. Appl. Phys. Lett. 96, 172505 (2010)

  4. Franco, A., Machado, F.L.A., Zapf, V.S., Wolff-Fabris, F.: Enhanced magnetic properties of Bi- substituted cobalt ferrites. J. Appl. Phys 109, 07A745 (2011)

    Article  Google Scholar 

  5. Kumar, L., Kar, M.: Influence of Al3+ ion concentration on the crystal structure and magnetic anisotropy of nanocrystalline spinel cobalt ferrite. J. Magn. Magn. Mater. 323, 2042 (2011)

    Article  ADS  Google Scholar 

  6. Kumar, L., Kar, M.: Effect of La3 + substitution on the structural and magnetocrystalline anisotropy of nanocrystalline cobalt ferrite (CoFe2−xLax O 4). Ceram. Int. 38, 4771 (2012)

    Article  Google Scholar 

  7. Kumar, L., Kumar, P., Kar, M.: Cation distribution by Rietveld technique and magnetocrystalline anisotropy of Zn substituted nanocrystalline cobalt ferrite. J. Alloys. Compd. 551, 72 (2013)

    Article  Google Scholar 

  8. Kumar, L., Kumar, P., Kar, M.: Non-linear behavior of coercivity to the maximum applied magnetic field in La substituted nanocrystalline cobalt ferrite. Physica B 448, 38 (2014)

    Article  ADS  Google Scholar 

  9. Kumar, L., Kumar, P., Srivastava, S.K., Kar, M.: Low temperature and high magnetic field dependence and magnetic properties of nanocrystalline cobalt ferrite. J. Supercond. Nov. Magn. 27, 1677 (2014)

    Article  Google Scholar 

  10. Franco, A., Machado, F.L.A., Zapf, V.S.: Magnetic properties of nanoparticles of cobalt ferrite at high magnetic field. J. Appl. Phys. 053913, 110 (2011)

    Google Scholar 

  11. Lopez, J.L., Pfannes, H.-D., Paniago, R., Sinnecker, J.P., Novak, M.A.: Investigation of the static and dynamic magnetic properties of CoFe2 O 4 nanoparticles. J. Magn. Magn. Mater. 320, e327 (2008)

    Article  Google Scholar 

  12. Bhowmik, R.N., Ranganathan, R., Nagarajan, R.: Coexistence of spin glass and superparamagnetism with ferrimagnetic order in polycrystalline spinel Co0.2Zn0.8Fe1.95Ho0.05 O 4. J. Magn. Magn. Mater 299, 327 (2006)

  13. Burianova, S., Vejpravova, J.P., Holec, P., Plocek, J., Niznansky, D.: Surface spin effects in La-doped CoFe2 O 4 nanoparticles prepared by microemulsion route. J. Appl. Phys. 110, 073902–7 (2011)

    Article  ADS  Google Scholar 

  14. Peddis, D., cannas, C., Piccaluga, G., Agostinelli, E., Fiorani, D.: Spin-glass-like freezing and enhanced magnetization in ultra-small CoFe2O4 nanoparticles. Nanotechnology 21, 125705–10 (2010)

    Article  ADS  Google Scholar 

  15. Ranvah, N., Nlebedim, I.C., Melikhov, Y., Snyder, J.E., Williams, P.I., Moses, A.J., Jiles, D.C.: Temperature dependence of magnetic properties of CoAlxFe2−x O 4. IEEE Trans. Magn. 45, 4261 (2009)

    Article  ADS  Google Scholar 

  16. Ranvah, N., Melikhov, Y., Jiles, D.C., Snyder, J.E., Moses, A.J., Williams, P.I., Song, S.H.: vol. 103, pp. 07E506–3 (2008)

  17. Franco, A.E., Silva, F.C., Zapf, V.S.: High temperature magnetic properties of Co1−xMgxFe2 O 4 nanoparticles prepared by forced hydrolysis method. J. Appl. Phys. 111, 07B530 (2012)

  18. Imine, S., Schoenstein, F., Mercone, S., Zaghrioui, M., Bettahar, N., Jouini, N.: Bottom-up and new compaction processes: a way to tunable properties of nanostructured cobalt ferrite ceramics. J. Euro. Ceram. Soc. 31, 2943 (2011)

    Article  Google Scholar 

  19. Muthuselvam, I.P., Bhowmik, R.N.: Mechanical alloyed Ho3+ doping in CoFe2 O 4 spinel ferrite and understanding of magnetic nanodomains. J. Magn. Magn. Mater 322, 767 (2010)

  20. Zaki, H.M., Al-Heniti, S.H., Hashhash, A.: Effect of Al3+ ion addition on the magnetic properties of cobalt ferrite at moderate and low temperatures. J. Magn. Magn. Mater. 401, 1027 (2016)

    Article  ADS  Google Scholar 

  21. Maurya, J.C., Janrao, P.S., Datar, A.A., Kanhe, N.S., Bhoraskar, S.V., Mathe, V.L.: Evidence of domain wall pinning in aluminum substituted cobalt ferrites. J. Magn. Magn. Mater. 412, 164 (2016)

    Article  ADS  Google Scholar 

  22. Kuanr, B.K., Mishra, S.R., Wang, L., DelConte, D., Neupane, D., Veera kumar, V., Celinski, Z.: Frequency and field dependent dynamic properties of CoFe2−xAlx O 4 ferrite nanoparticles. Mater. Res. Bull. 76, 22 (2016)

  23. Ansari, S., Arabi, H., Mojtaba Alavi Sadr (Zareii), S.: Structural, morphological, optical and magnetic properties of Al-doped CoFe2 O 4 nanoparticles prepared by sol–gel auto-combustion method. J. Supercond. Nov. Magn 29, 1525 (2016)

    Article  Google Scholar 

  24. Giri, J., Pradhan, P., Somani, V., Chelawat, H., Chhatre, S., Banerjee, R., Bahadur, D.: Synthesis and characterization of water-based ferrofluids of substituted ferrites [Fe1−x B xFe2 O 4, B = Mn, Co (x = 0-1)] for biomedical applications. J. Magn. Magn. Mater. 320, 1525 (2008)

  25. Yoon, S.: Temperature dependence of magnetic anisotropy constant in cobalt ferrite nanoparticles. J. Magn. Magn. Mater. 324, 2620 (2012)

    Article  ADS  Google Scholar 

  26. Hansen, M.F., Morup, S.: Estimation of blocking temperature from ZFC/FC curve. J. Magn. Magn. Mater. 203, 214 (1999)

    Article  ADS  Google Scholar 

  27. Sepelak, V., Bergmann, I., Feldhoff, A., Heitjans, P., Krumeich, F., Menzel, D., Litterst, F.J., Campbell, S.J., Becker, K.D.: Nanocrystalline nickel ferrite, NiFe2 O 4: mechanosynthesis, nonequilibrium cation distribution, canted spin arrangement and magnetic behavior. J. Phys. Chem. C 111, 5026 (2007)

  28. Thakur, S., Katyal, S.C., Singh, M.: Structural and magnetic properties of nano nickel-zinc ferrite synthesized by reverse micelle technique. J. Magn. Magn. Mater. 321, 1 (2009)

    Article  ADS  Google Scholar 

  29. Mukadam, M.D., Yusuf, S.M., Sharma, P., Kulshreshtha, S.K., Dey, G.K.: Dynamics of spin clusters in amorphous Fe2 O 3. Phys. Rev. B 72, 174408 (2005)

    Article  ADS  Google Scholar 

  30. Singh, S., Krupanidhi, S.B.: Surface spin glass behavior in sol-gel derived La0.7Ca0.3MnO3 nanotubes. Dalton. Trans., 4708 (2008)

  31. Guskos, N., Glenis, S., Likodimos, V., Typek, J., maryniak, M., Roslaniec, Z., Kwiatkowska, M., Baran, M., Szymczak, R., Petridis, D.: Matrix effects on the magnetic properties of γ-Fe2 O 3 nanoparticles dispersed in a multiblock copolymer. J. Appl. Phys. 99, 084307 (2006)

  32. Topkaya, R., Akman, O., Kazan, S., Aktas, B., Durmus, Z., Baykar, A.: Surface spin disorder and spin glass like behavior in manganese-substituted cobalt ferrite nanoparticles. J. Nanopart. Res. 14, 1156 (2012)

    Article  ADS  Google Scholar 

  33. Hadimani, R.L., Melikhov, Y., Snyder, J.E., Jiles, D.C.: Determination of Curie temperature by Arrott plot technique in Gd5(SixGe1−x)4 for x >0.575. J. Magn. Magn. Mater 320, e696 (2008)

  34. Lin, C.R., Wang, C.C., Chen, I.H.: Magnetic behavior of core-shell particles. J. Magn. Magn. Mater. 304, e34 (2006)

    Article  Google Scholar 

  35. Ray, J., Biswal, A.K., Acharya, S., Ganesan, V., Pradhan, D.K., Vishwakarma, P.N.: Effect of Co substitution on the magnetic properties of BiFeO3. J. Magn. Magn. Mater 324, 4084 (2012)

    Article  ADS  Google Scholar 

  36. Pramanik, A.K., Banerjee, A.: Critical behavior at paramagnetic to ferromagnetic phase transition in Pr0.5Sr0.5MnO3: A bulk magnetization study. Phys. Rev. B 79, 214426 (2009)

  37. deLacheisserie, E.D., Gignoux, D., Schlenker, M.: Springer Science & Business Media, New York

  38. Chikazumi, S.: Physics of Ferromagnetism, 2nd ed. Oxford University Press, New York (1997)

    Google Scholar 

Download references

Acknowledgments

The authors are thankful to the Indian Institute of Technology Guwahati for extending the TEM facility. IISER Bhopal is acknowledged for providing the facilities of high temperature magnetic measurement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manoranjan Kar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, L., Kumar, P., Zope, M.K. et al. High-Temperature Magnetic Behaviour of 10 % Aluminium-Substituted Cobalt Ferrite. J Supercond Nov Magn 30, 1629–1634 (2017). https://doi.org/10.1007/s10948-016-3965-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-016-3965-5

Keywords

Navigation