Skip to main content
Log in

Grain-Size-Dependent Low-Temperature Electrical Resistivity of Polycrystalline Co2MnAl Heusler Alloy Thin Films

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Low-temperature electrical resistivity of Co2MnAl Heusler alloy thin films prepared by DC magnetron sputtering technique has been investigated. After deposition of Co2MnAl thin films, they were annealed at 200–400 C to control the crystal structure and the atomic order between Co, Mn, and Al sites. The ratio of intensity of (200) and (220) XRD peaks increases with increasing annealing temperature. The low-temperature dependence of electrical resistivity demonstrated that the film structure and magnetic ordering effected to the resistivity of Co2MnAl. The temperature dependence of resistivity for all samples has demonstrated the exponential decrease when temperature increases. However, 1000 (1 /T) dependence of the logarithmic resistivity variation has not demonstrated the linear characteristic for all samples, and also, the temperature dependency of the deposited and annealed films has not been agreed with logarithmic, \(\rho (\mathrm {T})\propto {\ln }T\), behaviors. The temperature dependence of conductivity of samples has a relation with the square root of temperature. These kinds of behaviors have been attributed to grains/clusters and disordering of samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. de Groot, R.A., Mueller, F.M., Van Engen, P.G., Buschow, K.H.: J. Phys. Rev. Lett 50, 2024 (1983)

  2. Prinz, G.A.: Science 282, 1660 (1998)

    Article  Google Scholar 

  3. Raphel, M.P., Ravel, B., Huang, Q., Willard, M.A., Cheng, S.F., Das, B.N., Stroud, R.M., Bussmann, K.M., Claassen, J.H., Harris, V.G.: Phys. Rev. B 66, 104429 (2002)

    Article  ADS  Google Scholar 

  4. Webster, P.J.: J. Phys. Chem. Solids 32, 1221 (1971)

    Article  ADS  Google Scholar 

  5. Kato, M., Nishino, Y., Mizutani, U., Watanabe, Y., Asanoet, S.: Phys. Cond. Mat 12, 9153 (2000)

    ADS  Google Scholar 

  6. Nishino, Y., Sumi, H., Mizutani, U.: Phys. Rev B 71, 094425 (2005)

    Article  ADS  Google Scholar 

  7. Shreder, E., Streltsov, S.V., Svyazhin, A., Makhnev, A., Marchenkov, V.V., Lukoyanov, A., Weber, H.W.: J. Phys.: Cond. Mat 20, 045212 (2008)

    ADS  Google Scholar 

  8. Pechan, M.J., Yu, C., Carr, D., Palmstrom, C.J.: J. Magn. Magn. Matter 286, 340 (2005)

    Article  ADS  Google Scholar 

  9. Ambrose, T., Krebs, J.J., Prinz, G.A.: Appl. Phys. Lett 76, 3280 (2000)

    Article  ADS  Google Scholar 

  10. Slonczewski, J.C.: J. Magn. Magn. Mater 159, L1 (1996)

    Article  ADS  Google Scholar 

  11. Berger, L.: Phys. Rev. B 54, 9353 (1996)

    Article  ADS  Google Scholar 

  12. Nakatani, T.M., Mitani, S., Furubayashi, T., Hono, K.: Appl. Phys. Lett 99, 182505 (2011)

    Article  ADS  Google Scholar 

  13. Ito, K.: IEEE Trans. On Magn 41, 2630 (2005)

    Article  ADS  Google Scholar 

  14. Kubota, H., Fukushima, A., Ootani, Y., Yuasa, S., Ando, K., Maehara, H., Tsunekawa, K., Djayaprawira, D.D., Watanabe, N., Suzuki, Y.: IEEE Trans. On Magn 41, 2633 (2005)

    Article  ADS  Google Scholar 

  15. Albert, F.J., Katine, J.A., Buhrman, R.A., Ralph, D.C.: Appl. Phys. Lett 77, 3809 (2000)

    Article  ADS  Google Scholar 

  16. Yagami, K., Tulapurkar, A.A., Fukushima, A., Suzuki, Y.: Appl. Phys. Lett 85, 5634 (2004)

    Article  ADS  Google Scholar 

  17. Oogane, M., Yilgin, R., Shinano, M., Yakata, S., Sakuraba, Y., Ando, Y., Miyazaki, T.: J. Appl. Phys. 101. 09J501 (2007)

  18. Oogane, M., Wakitani, T., Yakata, S., Yilgin, R., Ando, Y., Sakuma, A., Miyazaki, T.: Jpn. J. Appl. Phys 45, 3889 (2006)

    Article  ADS  Google Scholar 

  19. Yilgin, R., Sakuraba, Y., Oogane, M., Mizukami, S., Ando, Y., Miyazaki, T.: Jpn. J. Appl. Phys 46, L205 (2007)

    Article  ADS  Google Scholar 

  20. Yilgin, R., Aktas, B.: Advances in nanoscale magnetism. Springer Proceedings in Physics. Istanbul 122, 37–67 (2009)

    Google Scholar 

  21. Yamada, S., Yamamoto, K., Ueda, K., Ando, Y., Hamaya, K., Sadoh, T., Miyao, M.: Thin Solid Films 518, S278—S280 (2010)

    Article  Google Scholar 

  22. Kocbay, A.N., Yilgin, R., Topkaya, R., Ahsen, A.S., Ozturk, O., Ozdemir, M., Aktas, B.: J. Supercond. Nov. Magn 25, 2813 (2012)

    Article  Google Scholar 

  23. Yilgin, R., Sakuraba, Y., Oogane, M., Ando, Y., Miyazaki, T.: J. Supercond. Nov. Magn 25, 2659 (2012)

    Article  Google Scholar 

  24. Fomina, K.A., Marchenkov, V.V., Shreder, E.I. Weber, H.W.: Solid State Phenomena 168–169, 545–548 (2011)

  25. Aftab, M., Jaffari, G.H., Hasanain, S.K., Abbas, T.A., Shah, S.I.: J. Phys D: Appl. Phys 45, 475001 (2012)

    Article  Google Scholar 

  26. Ozdogan, K., Galanakis, I.: J. Appl. Phys 110, 076101 (2011)

    Article  ADS  Google Scholar 

  27. Picozzi, S., Continenza, A., Freeman, A.J.: Phys. Rev. B 69, 094423 (2004)

    Article  ADS  Google Scholar 

  28. Picozzi, S., Freeman, A.J.: J. Phys.: Cond. Matter 19, 315215 (2007)

    Google Scholar 

  29. Miura, Y., Nagao, K., Shirai, M.: Phys. Rev. B 69, 144413 (2004)

    Article  ADS  Google Scholar 

  30. Yamamoto, M., Ishikawa, T., Taira, T., Li, G., Matsuda, K., Uemura. T.: J. Phys.: Cond. Matter 22, 164212 (2010)

    Article  ADS  Google Scholar 

  31. Kelear, R., Clemens, B.M.: J. Appl. Phys 96, 540 (2004)

    Article  ADS  Google Scholar 

  32. Alexander, L., Klug, H.P.: J. Appl. Phys 21, 137 (1950)

    Article  ADS  Google Scholar 

  33. Cullity, B.D.: Elements of X-ray Diffraction. Addison-Weley Inc. CA (1978)

  34. Warren, B.E.: X-ray Diffraction. Dover Inc., New York (1990)

    Google Scholar 

  35. Kubota, H., Nakata, J., Oogane, M., Ando, Y., Kato, H., Sakuma, A., Miyazaki, T.: J. Appl. Phys. 97, 10C913 (2005)

    Article  Google Scholar 

  36. Butenko, A.V., Bol’shutkin, D.N., Pecherskaya, V.I.: Sov. Phys. JETP 71, 983 (1990)

    Google Scholar 

  37. Babic, E., Ford, P.J., Rizzuto, C., Salamoni, E.: Solid State Commun 11, 519 (1972)

    Article  ADS  Google Scholar 

  38. Srinivas, K., Raja, M.M., Kamat, S.V.: J. Alloys Comp 619, 177 (2015)

    Article  Google Scholar 

  39. Venkatesh, Ch., Srinivas, V., Rao, V.V., Srivastava, S.K., Sudheer Babu, P.: J. Alloys Comp 577, 417 (2013)

    Article  Google Scholar 

  40. Michel, C., Baranovskii, S.D., Klar, P.J., Thomas, P.: Appl. Phys. Lett 89, 112116 (2006)

    Article  ADS  Google Scholar 

  41. Kanomoto, T., Sasaki, T., Hoshi, T., Narita, T., Harada, T., Nishihara, H., Yoshida, T., Note, R., Koyama, K., Nojiri, H., Kaneko, T., Motokawa, M.: J. Alloys Comp 390, 317–318 (200))

  42. Rossiter, P.L.: The electrical resistivity of metals and alloys. Cambridge University Press. Cambridge, 184 (1987)

  43. Hsu, S.Y., Wang, I.C., Liao, J.T.: Physica B 279, 196 (2000)

    Article  ADS  Google Scholar 

  44. Bergmann, G.: Phys. Rep 107, 1 (1984)

    Article  ADS  Google Scholar 

  45. Kuhn, R.C., Sigwarth, O., Miniatura, C., Delande, D., Müller, C.A.: New J. Phys 9, 161 (2007)

    Article  ADS  Google Scholar 

  46. Oner, Y., Kilic, A., Ozdemir, M., Celik, H., Senoussi, S.: J. Phys.: Cond. Matter 8, 11121 (1996)

    ADS  Google Scholar 

  47. Kudryavtsev, Y.V., Uvarov, N.V., Lermolenko, V.N., Dubowik, J.: J. Appl Phys 108, 113708 (2010)

    Article  ADS  Google Scholar 

  48. Lee, P.A., Ramakrishnan, T.A.: Rev. Mod. Phys 57, 287 (1985)

    Article  ADS  Google Scholar 

  49. Lund, M.S., Dong, J.W., Lu, J., Dong, X.Y., Palmstrom, C.J., Leighton, C.: Appl. Phys. Lett 80, 4798 (2002)

    Article  ADS  Google Scholar 

  50. Ampong, F.K., Boakye, F., Nkum, R.K.: J. Magn. Magn. Matter 322, 2235 (2010)

    Article  ADS  Google Scholar 

  51. Singh, S., Pal, S., Biswas, C.: J. Alloys Comp 616, 110 (2014)

    Article  Google Scholar 

  52. Grest, G.S., Nagel, S.R.: Phys. Rev. B 19, 3571 (1979)

    Article  ADS  Google Scholar 

  53. Coey, J.M.D., Viret, M., Von Molnar, S.: Adv. Phys 48, 167 (1999)

    Article  ADS  Google Scholar 

  54. Lund, M.S., Dong, J.W., Lu, J., Dong, X.Y., Palmstrom, C.J., Leighton, C.: Appl. Phys. Lett 80, 4798 (2002)

    Article  ADS  Google Scholar 

  55. Wang, K., Fujita, T., Chen, M.W., Nieh, T.G., Okada, H., Koyama, K., Zhang, W., Inoue, A., Jones, D.F., Stroink, G., Stadnik, Z.M., Dunlap, R.A.: Mater. Sci. Eng 99, 207 (1988)

    Article  Google Scholar 

  56. Banerjee, N., Roy, R., Majumdar, A.K.: Phys. Rev. B 24, 6801 (1981)

    Article  ADS  Google Scholar 

  57. Wang, K., Fujita, T., Chen, M.W., Nieh, T.G., Okada, H., Koyama, K., Zhang, W., Inoue, A.: Appl. Phys. Lett 91, 154101 (2007)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Resul Yilgin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yilgin, R., Oogane, M., Ando, Y. et al. Grain-Size-Dependent Low-Temperature Electrical Resistivity of Polycrystalline Co2MnAl Heusler Alloy Thin Films. J Supercond Nov Magn 30, 1577–1584 (2017). https://doi.org/10.1007/s10948-016-3957-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-016-3957-5

Keywords

Navigation