Skip to main content
Log in

Electrical and Dielectric Characterization of Bi–La Ion-Substituted Barium Hexaferrites

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

BaLa x Bi x Fe12−2xO19 (0.0 ≤ x ≤ 0.5) hexaferrites were produced by solid-state synthesis route, and the effect of Bi3+ and La3+ substitutions on electrical and dielectric properties of barium hexaferrite material were investigated. It is noticed that ac conductivity of barium (BaM) increases slightly with ionic substitutions of both La3+ and Bi3+ and then decreases. Ac conductivity is increased with increasing frequency at lower temperatures then remains constant for higher temperatures. This type of conductivity attitude could be originated from the indication of both electronics and polaron hopping mechanisms. The dielectric properties of BaLa x Bi x Fe12−2xO19 (0.0 ≤ x ≤ 0.5) hexaferrites represent a very interesting tunability as functions of frequency, temperature, and Bi3+ and La3+ ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Ashiq, M.N., Iqbal, M.J., Gul, I.H.: Effect of Al–Cr doping on the structural, magnetic and dielectric properties of strontium hexaferrite nanomaterials. J. Magn. Magn. Mater. 323, 259–263 (2011)

    Article  ADS  Google Scholar 

  2. Liu, X.-S., Fernandez-Garcia, L., Hu, F., Zhu, D.-R., Suárez, M., Menéndez, J.L.: Magneto-optical Kerr spectra and magnetic properties of Co-substituted M-type strontium ferrites. Mater. Chem. Phys. 133, 961–964 (2012)

    Article  Google Scholar 

  3. Auwal, I., Ünal, B., Güngüneş, H., Shirsath, S.E., Baykal, A.: Dielectric properties, cationic distribution calculation and hyperfine interactions of La 3 + and Bi 3 + doped strontium hexaferrites, doped strontium hexaferrites. Ceram. Int. 42, 9100–9115 (2016)

    Article  Google Scholar 

  4. Auwal, I., Erdemi, H., Sözeri, H., Güngüneş, H., Baykal, A.: Magnetic and dielectric properties of Bi3+ substituted SrFe12O19 hexaferrite. J. Magn. Magn. Mater. 412, 69–82 (2016)

    Article  ADS  Google Scholar 

  5. Bakş, Y., Auwal, I.A., Ünal, B., Baykal, A.: Conductivity and dielectric properties of SrLa x Bi x Y x Fe12−3xO19 (0.0 = x = 0.33) hexaferrites. Ceram. Int. 42, 11780–11795 (2016)

    Article  Google Scholar 

  6. Kumar, P., Gaur, A., Kotnala, R.: Magneto-electric response in Pb substituted M-type barium-hexaferrite Ceramics International (2016)

  7. Valenzuela, R.: Novel applications of ferrites, Physics Research International, 2012 (2012)

  8. Harris, V.G., Geiler, A., Chen, Y., Yoon, S.D., Wu, M., Yang, A., Chen, Z., He, P., Parimi, P.V., Zuo, X., Patton, C.E., Abe, M., Acher, O., Vittoria, C.: Recent advances in processing and applications of microwave ferrites. J. Magn. Magn. Mater. 321, 2035–2047 (2009)

    Article  ADS  Google Scholar 

  9. Pullar, R.C.: Hexagonal ferrites: a review of the synthesis, properties and applications of hexaferrite ceramics. Prog. Mater. Sci. 57, 1191–1334 (2012)

    Article  Google Scholar 

  10. Kaur, P., Chawla, S.K., Meena, S.S., Yusuf, S.M., Narang, S.B.: Synthesis of Co-Zr doped nanocrystalline strontium hexaferrites by sol-gel auto-combustion route using sucrose as fuel and study of their structural, magnetic and electrical properties. Ceram. Int. 42, 14475–14489 (2016)

    Article  Google Scholar 

  11. Castro, W., Corrêa, R., Paulim Filho, P., Mercury, J.R., Cabral, A.: Dielectric and magnetic characterization of barium hexaferrite ceramics. Ceram. Int. 41, 241–246 (2015)

    Article  Google Scholar 

  12. Iqbal, M.J., Ashiq, M.N., Hernandez-Gomez, P., Munoz, J.M.: Synthesis, physical, magnetic and electrical properties of Al–Ga substituted co-precipitated nanocrystalline strontium hexaferrite. J. Magn. Magn. Mater. 320, 881–886 (2008)

    Article  ADS  Google Scholar 

  13. Hussain, S., Shah, N.A., Maqsood, A., Ali, A., Naeem, M., Syed, W.A.A.: Characterization of Pb-doped Sr-ferrites at room temperature. J. Supercond. Nov. Magn. 24, 1245–1248 (2011)

    Article  Google Scholar 

  14. Asghar, G., Anis-ur-Rehman, M.: Structural, dielectric and magnetic properties of Cr–Zn doped strontium hexa-ferrites for high frequency applications. J. Alloys Compd. 526, 85–90 (2012)

    Article  Google Scholar 

  15. Shakoor, S., Ashiq, M.N., Malana, M.A., Mahmood, A., Warsi, M.F., Najam-ul-Haq, M., Karamat, N.: Electrical, dielectric and magnetic characterization of Bi–Cr substituted M-type strontium hexaferrite nanomaterials. J. Magn. Magn. Mater. 362, 110–114 (2014)

    Article  ADS  Google Scholar 

  16. Ullah, Z., Atiq, S., Naseem, S.: Influence of Pb doping on structural, electrical and magnetic properties of Sr-hexaferrites. J. Alloys Compd. 555, 263–267 (2013)

    Article  Google Scholar 

  17. Auwal, I., Baykal, A., Güner, S., Sertkol, M., Sözeri, H.: Magneto-optical properties BaBi x La x Fe12−2x O19 (0.0 = x = 0.5) hexaferrites. J. Magn. Magn. Mater. 409, 92–98 (2016)

    Article  ADS  Google Scholar 

  18. Auwal, I.A., Baykal, A., Güngüneş, H., Shirsath, S.E.: Structural investigation and hyperfine interactions of BaBi x La x Fe12−2xO19 (0.0 = x = 0.5) hexaferrites. Ceram. Int. 42, 3380–3387 (2016)

    Article  Google Scholar 

  19. Irvine, J.T., Sinclair, D.C., West, A.R.: Electroceramics: characterization by impedance spectroscopy. Adv. Mater. 2, 132–138 (1990)

    Article  Google Scholar 

  20. El Ata, A.A., El Nimr, M., Attia, S., El Kony, D., Al-Hammadi, A.: Studies of AC electrical conductivity and initial magnetic permeability of rare-earth-substituted Li–Co ferrites. J. Magn. Magn. Mater. 297, 33–43 (2006)

    Article  ADS  Google Scholar 

  21. Unal, B., Durmus, Z., Kavas, H., Baykal, A., Toprak, M.: Synthesis, conductivity and dielectric characterization of salicylic acid–Fe3O4 nanocomposite. Mater. Chem. Phys. 123, 184–190 (2010)

    Article  Google Scholar 

  22. Ünal, B., Baykal, A.: Effect of Zn substitution on electrical properties of nanocrystalline cobalt ferrite. J. Supercond. Nov. Magn. 27, 469–479 (2014)

    Article  Google Scholar 

  23. Vinnik, D., Tarasova, A.Y., Zherebtsov, D., Mashkovtseva, L., Gudkova, S., Nemrava, S., Yakushechkina, A., Semisalova, A., Isaenko, L., Niewa, R.: Cu-substituted barium hexaferrite crystal growth and characterization. Ceram. Int. 41, 9172– 9176 (2015)

    Article  Google Scholar 

  24. Petrila, I., Tudorache, F.: Influence of partial substitution of fe3+ with w3+ on the microstructure, humidity sensitivity, magnetic and electrical properties of barium hexaferrite. Superlattices Microstruct. 70, 46–53 (2014)

    Article  ADS  Google Scholar 

  25. Kumari, N., Kumar, V., Singh, S.: Synthesis, structural and dielectric properties of Cr3+ substituted Fe3O4 nano-particles. Ceram. Int. 40, 12199–12205 (2014)

    Article  Google Scholar 

  26. Rezlescu, N., Rezlescu, E.: Dielectric properties of copper containing ferrites. Phys. Status Solidi A 23, 575–582 (1974)

    Article  ADS  Google Scholar 

  27. Abo El Ata, A., Ahmed, M.: Dielectric and AC conductivity for BaCo2−xCu x Fe16O27 ferrites. J. Magn. Magn. Mater. 208, 27–36 (2000)

    Article  ADS  Google Scholar 

  28. Bao, J., Zhou, J., Yue, Z., Li, L., Gui, Z.: Dielectric behavior of Mn-substituted Co2Z hexaferrites. J. Magn. Magn. Mater. 250, 131–137 (2002)

    Article  ADS  Google Scholar 

  29. Iqbal, M.J., Ashiq, M.N.: Physical and electrical properties of Zr–Cu substituted strontium hexaferrite nanoparticles synthesized by co-precipitation method. Chem. Eng. J. 136, 383–389 (2008)

    Article  Google Scholar 

  30. Verwey, E., De Boer, F., Van Santen, J.: Cation arrangement in spinels. J. Chem. Phys. 16, 1091–1092 (1948)

  31. Sanghi, S., Agarwal, A.: Rietveld refinement, electrical properties and magnetic characteristics of Ca–Sr substituted barium hexaferrites. J. Alloys Compd. 513, 436–444 (2012)

    Article  Google Scholar 

  32. Venkataraju, C., Satishkumar, G., Sivakumar, K.: Effect of bismuth on the properties of Mn ferrite nanoparticles prepared by co-precipitation method. J. Mater. Sci. Mater. Electron. 23, 1163–1168 (2012)

    Article  Google Scholar 

  33. Pal, M., Brahma, P., Chakravorty, D.: Magnetic and electrical properties of nickel-zinc ferrites doped with bismuth oxide. J. Magn. Magn. Mater. 152, 370–374 (1996)

    Article  ADS  Google Scholar 

  34. Fayek, M., Ata-Allah, S., Roumaih, K., Ismail, S.: Thermoelectric power properties of Zn substituted Cu–Ga spinel ferrites. Mater. Lett. 63, 1010–1012 (2009)

    Article  Google Scholar 

  35. Verma, S., Chand, J., Singh, M.: Structural and electrical properties of Al3+ ions doped nanocrystalline Mg0.2Mn0.5Ni0.3AlyFe2−yO4 ferrites synthesized by citrate precursor method. J. Alloys Compd. 587, 763–770 (2014)

    Article  Google Scholar 

  36. Klinger, M.: Two-phase polaron model of conduction in magnetite-like solids. J. Phys. C Solid State Phys. 8, 3595 (1975)

    Article  ADS  Google Scholar 

  37. Iqbal, M.J., Ashiq, M.N., Gomez, P.H.: Effect of doping of Zr–Zn binary mixtures on structural, electrical and magnetic properties of Sr-hexaferrite nanoparticles. J. Alloys Compd. 478, 736–740 (2009)

    Article  Google Scholar 

  38. Chhaya, U.V., Kulkarni, R.: Metal-insulator type transition in aluminium and chromium co-substituted nickel ferrites. Mater. Lett. 39, 91–96 (1999)

    Article  Google Scholar 

  39. Belavi, P., Chavan, G., Naik, L., Somashekar, R., Kotnala, R.: Structural, electrical and magnetic properties of cadmium substituted nickel–copper ferrites. Mater. Chem. Phys. 132, 138–144 (2012)

    Article  Google Scholar 

  40. Amir, M., Ünal, B., Geleri, M., Güngüneş, H., Shirsath, S.E., Baykal, A.: Electrical properties and hyperfine interactions of boron doped Fe3O4 nanoparticles. Superlattices Microstruct. 88, 450–466 (2015)

    Article  ADS  Google Scholar 

  41. Sözeri, H., Baykal, A., Ünal, B.: Low-temperature synthesis of single-domain Sr-hexaferrite particles by solid-state reaction route. Phys. Status Solidi (A) 209, 2002–2013 (2012)

    Article  ADS  Google Scholar 

  42. Baykal, A., Demir, M., Ünal, B., Sözeri, H., Toprak, M.S.: Synthesis, characterization, and dielectric properties of BaFe10 (Mn2+Zn2+Zn2+) O19 hexaferrite. J. Supercond. Nov. Magn. 29, 199–205 (2016)

    Article  Google Scholar 

  43. Honegger, T., Berton, K., Picard, E., Peyrade, D.: Determination of clausius–mossotti factors and surface capacitances for colloidal particles. Appl. Phys. Lett. 181906, 98 (2011)

    Google Scholar 

Download references

Acknowledgments

Dr. Yildiz would like to thank Namık Kemal University (NKUBAP.06.GA.16.047).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yıldız.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Auwal, I., Ünal, B., Baykal, A. et al. Electrical and Dielectric Characterization of Bi–La Ion-Substituted Barium Hexaferrites. J Supercond Nov Magn 30, 1499–1514 (2017). https://doi.org/10.1007/s10948-016-3945-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-016-3945-9

Keywords

Navigation