Glass Forming and Crystallization Behavior of (Fe1−xy Co x Ni y )72Cr15Zr10 W 3 Alloys

  • W. Li
  • Y. Z. YangEmail author
Original Paper


Metalloid-free (Fe1−xy Co x Ni y )72Cr15Zr10 W 3 (x, y = 0, 0.25) alloys were synthesized by a rapid quenching technique at the surface velocity of the cooper roller of 40 m/s. Glass-forming ability, crystallization kinetics, and saturation magnetization of the amorphous ribbons were analyzed by XRD, differential scanning calorimetry, and VSM. Results show that only (Fe0.5Co0.25Ni0.25)72Cr15Zr10 W 3 has an amorphous structure with ΔT x = 39 K. The saturation magnetization (M s) is 49.2 emu/g, and coercivity (H c) is as low as 5.0 A/m. The apparent activation energies of the alloys were calculated to be E x (K) = 331.8 kJ/mol and E p (K) = 255.5 kJ/mol, respectively, by using the Kissinger and Ozawa plot method. The high activation energy of crystallization implies that the atomic diffusion in the (Fe0.5Co0.25Ni0.25)72Cr15Zr10 W 3 alloy system is difficult, demonstrating that the obtained amorphous ribbon exhibits high thermal stability. With the increase of heating rates, the crystallization characteristic temperatures increase correspondingly. After annealing, the crystallization process of the amorphous ribbon was the eutectic crystallization method for the multi-crystalline precipitation.


Amorphous ribbon Heating rate Crystallization behavior Activation energy Annealing 



This work was supported by the Specialized Research Fund for the Doctoral Program of Higher Education (No. 20124420110007) and the Demonstration Dase Fund for Joint Training Graduate of Guangdong Province (No. 2013JDXM27)


  1. 1.
    Inoue, A., Shinohara, Y., Gook, J.S.: Thermal magnetic properties of bulk Fe-based glassy alloys prepared by copper mold casting. Mater. Trans. JIM 36(12), 1427–1433 (1995)CrossRefGoogle Scholar
  2. 2.
    Inoue, A., Gook, J.S.: Effect of additional elements (M) on the thermal stability of supercooled liquid in Fe72−xAl5Ga2 P 11 C 6 B 4 M x glassy alloys. Mater. Trans. JIM 37(1), 32–38 (1996)Google Scholar
  3. 3.
    Wang, J., Cao, W., Wang, L., et al.: Fe–Al–P–C–B bulk metallic glass with good mechanical and soft magnetic properties. J. Alloys Comp. 637, 5–9 (2015)CrossRefGoogle Scholar
  4. 4.
    Inoue, A., Zhang, T., Itoi, T., et al.: New Fe-Co-Ni-Zr-B amorphous alloys with wide supercooled liquid regions and good soft magnetic properties. Mater. Trans. JIM 38(4), 359–362 (1997)CrossRefGoogle Scholar
  5. 5.
    Shen, T.D., Sun, B.R. Xin S.W.: Influence of metalloids and annealing on the fundamental magnetic properties of bulk Fe–(Cr, Mo, Ga)–(P, B, C) metallic glasses. Intermetallics 65, 111–116 (2015)CrossRefGoogle Scholar
  6. 6.
    Zhang, W., Inoue, A.: Thermal magnetic properties of Fe-Co-Ln-B (Ln = Nd, Sm, Tb or Dy) amorphous alloys with high magnetostriction. Mater. Trans. JIM 40(1), 78–81 (1999)CrossRefGoogle Scholar
  7. 7.
    Imafuku, M., Yaoita, K., Sato, S., et al.: Local atomic structure of Fe-Co-Ln-B (Ln = Sm, Tb or Dy) amorphous alloys with supercooled liquid region. Mater. Sci. Eng. A 304, 660–664 (2001)CrossRefGoogle Scholar
  8. 8.
    Lu, Z.P., Liu, C.T., Thompson, J.R., et al.: Structural amorphous steels. Phys. Rev. Lett. 92(24), 245503 (2004)ADSCrossRefGoogle Scholar
  9. 9.
    Shen, J., Chen, Q., Sun, J., et al.: Exceptionally high glass-forming ability of an FeCoCrMoCBY alloy. Applied Phys. Lett. 86(15), 151907 (2005)ADSCrossRefGoogle Scholar
  10. 10.
    Han, J., Wang, C., Kou, S., et al.: Thermal stability, crystallization behavior, Vickers hardness and magnetic properties of Fe–Co–Ni–Cr–Mo–C–B–Y bulk metallic glasses. Trans. Nonferrous Metals Soc. China 23(1), 148–155 (2013)CrossRefGoogle Scholar
  11. 11.
    Zhang, T., Liu, F., Pang, S., et al.: Ductile Fe-based bulk metallic glass with good soft-magnetic properties. Mater. Trans. 48(5), 1157–1160 (2007)CrossRefGoogle Scholar
  12. 12.
    Jang, B.T., Kim, Y.I.: Effects of Cr or Mo compositions on mechanical behavior of Fe-base bulk amorphous alloy. Adv. Mater. Res. 1110, 136–141 (2015)CrossRefGoogle Scholar
  13. 13.
    Kissinger, H.E.: Variation of peak temperature with heating rate in differential thermal analysis. J. Res. Nat. Bureau Stand. 57(4), 217–221 (1956)CrossRefGoogle Scholar
  14. 14.
    Ozawa, T.: Kinetic analysis of derivative curves in thermal analysis. J. Thermal Anal. 2(3), 301–324 (1970)CrossRefGoogle Scholar
  15. 15.
    Pratap, A., Lad, K.N., Rao, T.L.S., et al.: Kinetics of crystallization of amorphous Cu50Ti50 alloy. J. Non-crystalline Solids 345, 178–181 (2004)ADSCrossRefGoogle Scholar
  16. 16.
    Jang, J.S.C., Chen, Y.W., Chang, L.J., et al.: Crystallization and fracture behavior of the Zr65xAl7.5Cu17.5Ni10Six bulk amorphous alloys. Mater. Chem. Phys. 89(1), 122–129 (2005)CrossRefGoogle Scholar
  17. 17.
    Xia, M.X., Ma, C.L., Zheng, H.X., et al.: Preparation and crystallization of Ti53Cu27 Ni12Zr3Al7Si3 B 1 bulk metallic glass with wide supercooled liquid region. Mater. Sci. Eng. A 390(1), 372–375 (2005)Google Scholar
  18. 18.
    Movahedi, B., Enayati, M.H., Wong, C.C.: On the crystallization behavior of amorphous FeCrMoBPSi-C powder prepared by mechanical alloying. Mater. Lett. 64(9), 1055–1058 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Faculty of Materials and EnergyGuangdong University of TechnologyGuangzhouChina

Personalised recommendations