Magnetic AC Loss of Monofilament Sr 0 . 6 K 0 . 4 Fe 2 As 2 /Ag Tape

  • Qi Liu
  • Guomin ZhangEmail author
  • Hui Yu
  • Zhongjing Liu
Original Paper


Measurements of magnetic AC losses in applied magnetic fields have been made on monofilament Sr0.6 K 0.4Fe2As2/Ag tape in the temperature range between 15 and 30 K. The magnetic AC losses are obtained by an M-H hysteresis loop-based method. That is, AC losses were determined from the area of the hysteresis loop measured using a vibrating sample magnetometer (VSM) under an externally applied cyclic field up to 7 T. Temperature dependence critical currents of the tapes are measured as a function of magnetic field up to 10 T. The experimental losses are compared with those based on the critical-state model and those based on the modified critical-state model. There is a good agreement with the second model over a wide field range. Also, measured AC losses with varying field ramp rate are compared with each other.


Magnetic AC loss Iron-based superconductor 



The authors thank Yanwei Ma’s group of Institute of Electrical Engineering for providing the Sr0.6K0.4Fe2As2 samples. Many thanks to Dr. Guole Liu for useful discussions. This work is supported by the Natural Science Foundation of China (Contract Nos. 51377155).


  1. 1.
    Kamihara, Y., et al.: Iron-based layered superconductor La [O1−x F x] FeAs (x = 0.05-0.12) with Tc = 26 K. J. Am. Chem. Soc. 130, 3296 (2008)Google Scholar
  2. 2.
    Marianne, R., et al.: Superconductivity at 38 K in the iron arsenide (Ba1−x K x)Fe2As2. Phys. Rev. Lett. 101, 107006 (2008)Google Scholar
  3. 3.
    Ni, N., et al.: Anisotropic thermodynamic and transport properties of single-crystalline Ba1−x K xFe2As2 (x = 0 and 0.45). Phys. Rev. B 78, 014507 (2008)Google Scholar
  4. 4.
    Wang, X., et al.: Very strong intrinsic flux pinning and vortex avalanches in (Ba, K)Fe2As2 superconducting single crystals. Phys. Rev. B 82, 024525 (2010)Google Scholar
  5. 5.
    Yamamoto, A., et al.: Small anisotropy, weak thermal fluctuations, and high field superconductivity in Co-doped iron pnictide Ba(Fe1−xCox)2As2. Appl. Phys. Lett. 94, 062511 (2009)Google Scholar
  6. 6.
    Sumption, M.D., Peng, X., Lee, E., Wu, X., Collings, E.W.: Analysis of magnetization, AC loss, and deff for various internal-Sn based Nb3Sn multifilamentary strands with and without subelement splitting. Cryogenics 44, 711–725 (2004)ADSCrossRefGoogle Scholar
  7. 7.
    Collings, E.W., Sumption, M.D., Itoh, K., Wada, H., Tachikawat, K.: Second VAMAS a.c. loss measurement intercomparison-magnetization measurement of low-frequency (hysteretic) a.c. loss in NbTi multifilamentary strands. Cryogenics 37, 49–60 (1997)ADSCrossRefGoogle Scholar
  8. 8.
    Bordini, B., Bessett, D., Bottura, L., Devred, A., Jewell, M., Richter, D., Senatore, C.: Magnetization and inter-filament contact in HEP and ITER bronze-route Nb3sn wires. IEEE Trans. Appl. Supercond. 21, 3373–3376 (2011)ADSCrossRefGoogle Scholar
  9. 9.
    Duckworth, R.C., Thompson, J.R., Gouge, M.J., Lue, J.W., Ijaduola, A.O., Yu, D., Verebelyi, D.T.: Transport ac loss studies of YBCO coated conductors with nickel alloy substrates. Supercond. Sci. Technol. 16, 1294–1298 (2003)ADSCrossRefGoogle Scholar
  10. 10.
    Haken, B., Rabbers, J.-J., Kate, H.H.J.: Magnetization and AC loss in a superconductor with an elliptical cross-section and arbitrary aspect ratio. Phys. C 377, 156–164 (2002)ADSCrossRefGoogle Scholar
  11. 11.
    Miiller, K.H., Andrikidis, C., Liu, H.K., Dou, S.X.: AC Hysteresis losses in monofilamentary Pb-Bi-Sr-Ca-Cu-O/Ag tapes. Phys. C 247, 74–82 (1995)ADSCrossRefGoogle Scholar
  12. 12.
    Liu, Q., Zhang, G., Jing, L., Zhu, Z., Yu, H., Yan, J., Liu, Z.: Quench behaviors of monofilament iron based Sr0.6 K 0.4Fe2As2 tape with Ag Sheath at different temperatures. IEEE Trans. Appl. Supercond. 26, 1–6 (2016)Google Scholar
  13. 13.
    Lin, H., Yao, C., Zhang, X., et al.: Enhanced transport critical current density in textured. Phys. C 490(2013), 37–42 (2013)ADSCrossRefGoogle Scholar
  14. 14.
    Bean, C.P.: Magnetization of hard superconductors. Phys. Rev. Lett. 8, 250 (1962)ADSCrossRefzbMATHGoogle Scholar
  15. 15.
    Ishii, S.H.H., Hara, T., Fujikami, J., Satot, K.: The a.c. losses in (Bi, Pb), Sr2Ca, Cu,0,silver-sheathed superconducting wires. Cryogenics 36, 697–703 (1996)ADSCrossRefGoogle Scholar
  16. 16.
    Oota, T.F.A., Matsui, M., Yuhya, S., Hiraoka, M.: AC Losses of Ag-sheathed (Bi, Pb) eSr2Ca2Cu3Ox monofilamentary and multifilamentary tapes. Phys. C 249, 157–165 (1995)ADSCrossRefGoogle Scholar
  17. 17.
    Yao, C., Wang, C., et al.: A comparative study of Sr1−x K xFe2As2 and SmFeAsO1−x F x superconducting tapes by magneto-optical imaging. Supercond. Sci. Tech. 27, 044019 (2014)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Qi Liu
    • 1
    • 2
    • 3
    • 4
  • Guomin Zhang
    • 1
    • 2
    Email author
  • Hui Yu
    • 1
    • 2
    • 3
  • Zhongjing Liu
    • 1
    • 2
  1. 1.Key Laboratory of Applied SuperconductivityChinese Academy of SciencesBeijingChina
  2. 2.Institute of Electrical EngineeringChinese Academy of SciencesBeijingChina
  3. 3.University of the Chinese Academy of SciencesBeijingChina
  4. 4.Institute of ScienceInformation Engineering UniversityZhengzhouChina

Personalised recommendations