Skip to main content

Temperature Dependence Low-Field Microwave Absorption in a Powder Sample of SmFeAs(O,F) Iron Pnictide Superconductor


The effect of temperature variation on low-field microwave absorption (LFMA) was investigated on the SmFeAs(O,F) powder sample of average particle size of ∼3μm in the superconducting region (40K). The two peaks (broad and narrow) which were reported on a pellet of the same sample (Onyancha et al., J. Supercond. Nov. Magn. 28, 2927 (2015)) are observed on the LFMA line shape signal of this powdered sample. It evidently indicates that the peaks are not necessary confined to pellet sample only. Also, the LFMA intensity is found to evolve as a function of temperature. This temperature dependence of the LFMA intensity is interpreted on the framework of effective medium theory in which coupling and decoupling of Josephson junction is considered. Furthermore, we observed an anomalous hysteresis (the LFMA signal in the forward DC field sweep is above the backward DC field sweep) which is consistent with the prediction of the two-level critical state model.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. 1.

    Onyancha, R.B., Shimoyama, J., Singh, S.J., Ogino, H., Srinivasu, V.V.: J. Supercond. Nov. Magn. 28, 2927 (2015)

    Article  Google Scholar 

  2. 2.

    Bhat, S.V., Panguly, P., Rao, C.N.R.: Pramana J. Phys. 28, L425 (1987)

    ADS  Article  Google Scholar 

  3. 3.

    Bhat, S.V., Ganguly, P., Ramakrishnan, T.V., Rao, C.N.R.: Pramana J. Phys 20, L559 (1987)

    ADS  Google Scholar 

  4. 4.

    Blazey, K.W., Muller, K.A., Bednorz, J.G., Berlinger, W., Amoretti, G., Buluggiu, E., Vera, A., Matacotta, F.C.: Phys. Rev. B 36, 7241 (1987)

    ADS  Article  Google Scholar 

  5. 5.

    Dunny, R., Hautala, J., Ducharme, S., Lee, B., Symko, O.G., Taylor, P.C., Zheng, D.J., Xu, J.A.: Phys. Rev. B 36, 2361 (1987)

    ADS  Article  Google Scholar 

  6. 6.

    Srinivasu, V.V., Bhat, S.V., Muralidhar, G.K., Mohan Rao, G., Mohan, S.: Pramana 40, 119 (1993)

    ADS  Article  Google Scholar 

  7. 7.

    Stalder, M., Stefanicki, G., Warden, M., Portis, A.M., Waldner, F.: Physica C 153–155, 659–660 (1988)

    Article  Google Scholar 

  8. 8.

    Panarina, N.Y., Talanov, Y.I., Shaposhnikova, T.S., Beysengulov, N.R., Vavilova, E.: Phys. Rev. B 81, 224509 (2010)

    ADS  Article  Google Scholar 

  9. 9.

    Srivivasu, V.V., Pinto, R., Sastry, M.D.: Appl. Supercond 4, 195 (1996)

    Article  Google Scholar 

  10. 10.

    Ji, L., Rzchowski, M.S., Anand, N., Tinkham, M.: Phys. Rev. B 47, 470 (1993)

    ADS  Article  Google Scholar 

  11. 11.

    Deutscher, G., Muller, K.A.: Phys. Rev. Lett. 59, 1745 (1987)

    ADS  Article  Google Scholar 

  12. 12.

    Srinivasu, V.V., Thomas, B., Hegde, M.S., Bhat, S.V.: J. Appl. Phys. 75, 4131–4136 (1994)

    ADS  Article  Google Scholar 

  13. 13.

    Weides, M., Kemmler, M., Kohlstedt, H., Waser, R., Koell, D., Kleiner, R., Goldobin, E.: PRL 97, 247001 (2006)

    ADS  Article  Google Scholar 

  14. 14.

    Knauf, N., Fischer, J., Schmidt, P., Roden, B., Borowski, R., Buchner, B., Micklitz, H., Freimuth, A., Kataev, V., Khomskii, D.I.: Europhys. Lett. 35, 541 (1996)

    ADS  Article  Google Scholar 

  15. 15.

    Knauf, N., Fischer, J., Schmidt, P., Roden, B., Borowski, R., Buchner, B., Micklitz, H., Freimuth, A., Khomskii, D.I., Kataev, V.: Physica C 299, 125 (1998)

    ADS  Article  Google Scholar 

  16. 16.

    Pradhan, A.K., Roy, S.B., Chaddah, P., Chen, C., Wanklyn, B.M.: Phys. Rev. B 52, 6215 (1995)

    ADS  Article  Google Scholar 

  17. 17.

    Pallecchi, I., Tropeano, M., Lamura, G., Pani, M., Palombo, M., Palenzona, A., Putti, M.: Physica C 482, 68 (2012)

    ADS  Article  Google Scholar 

  18. 18.

    Senatore, C., Flukiger, R., Cantoni, M., Wu, G., Liu, R.H., Chen, X.H.: Phys. Rev. B 78, 054514 (2008)

    ADS  Article  Google Scholar 

  19. 19.

    Fang, L., Jia, Y., Mishra, V., Chaparro, C., Vlasko-Vlasov, V.K., Koshelev, A.E., Welp, U., Crabtree, G.W., Zhu, S., Zhigadlo, N.D., Katrych, S., Karpinski, J., Kwok, W.K.: Nat. Commun. 4, 2655 (2013)

    ADS  Google Scholar 

  20. 20.

    Moll, P.J.W., Puzniak, R., Balakirev, F., Rogacki, K., Zarpinski, J., Zhigadlo, N.D., Batlogg, B.: Nat. Mat. 9, 628 (2010)

    Article  Google Scholar 

  21. 21.

    Lida, K., Hanisch, J., Tarantini, C., Kurth, F., Jaroszynski, J., Ueda, S., Naito, M., Ichinose, A., Tsukada, I., Reich, E., Grinenko, V., Schultz, L., Holzapfel, B.: Sci. Rep 3, 2139 (2013)

    Google Scholar 

  22. 22.

    Paglione, J., Greene, R.L.: Nat. Phys. 6, 645 (2010)

    Article  Google Scholar 

  23. 23.

    Johnston, D.C.: Adv. Phys. 59, 803 (2010)

    ADS  Article  Google Scholar 

  24. 24.

    Hosono, H., Kuroki, K.: Physica C 514, 399 (2015)

    ADS  Article  Google Scholar 

  25. 25.

    Chen, X.H., Wu, T., Wu, G., Liu, R.H., Chen, H., Fang, D.F.: Nature 453, 761 (2008)

    ADS  Article  Google Scholar 

  26. 26.

    Singh, J.S., Shimoyama, J., Yamamoto, A., Ogino, H., Kishio, K.: Supercond. Sci. Technol. 26, 065006 (2013)

    ADS  Article  Google Scholar 

  27. 27.

    Singh, S.J., Shimoyama, J., Yamamoto, A., Ogino, H., Kishio, K.: IEEE Trans. Appl. Supercond. 23, 7300605 (2013)

    Article  Google Scholar 

  28. 28.

    Onyancha, R.B., Shimoyama, J., Singh, S.J., Hayashi, K., Ogino, H., Srinivasu, V.V.: Physica C (2016). doi:10.1016/j.physc.2016.07.019

    Google Scholar 

  29. 29.

    Srinivasu, V.V., Itoh, K., Hashizume, A., Sreedevi, V., Kohmoto, H., Endo, T., Ricardo da Silva, R., Kopelevich, Y., Moehlecke, S., Masui, T., Hayashi, K.: J. Supercond. Nov. Magn. 14, 41 (2001)

    ADS  Article  Google Scholar 

  30. 30.

    Stankowski, J., Kahol, P.K., Dalal, N.S., Moodera, J.S.: Phys. Rev. B 36, 7126 (1987)

    ADS  Article  Google Scholar 

  31. 31.

    Srinivasu, V.V.: J. Supercond. Nov. Magn. 23, 305–308 (2010)

    Article  Google Scholar 

  32. 32.

    Talanov, Y., Beisengulov, N., Kornilov, G., Shaposhnikova, T., Vavilova, E., Nacke, C., Panarina, S., Hess, C., Kataev, V., Buchner, B.: Supercond. Sci. Technol. 26, 045015 (2013)

    ADS  Article  Google Scholar 

  33. 33.

    Dulcic, A., Rakvin, B., Pozek, M.: Europhys. Lett. 10, 593–598 (1989)

    ADS  Article  Google Scholar 

  34. 34.

    Portis, A.M., Blazey, K.W., Muller, K.A., Bednorz, J.G.: Europhys. Lett. 5, 467 (1988)

    ADS  Article  Google Scholar 

  35. 35.

    Bhat, S.V., Srinivasu, V.V., Kumar, N.: Phys. Rev. B 44, 10121 (1991)

    ADS  Article  Google Scholar 

  36. 36.

    Iga, F., Grover, A.K., Yamaguchi, Y., Nishihara, Y., Goyal, N., Bhat, S.V.: Phys. Rev. B 51, 8521 (1995)

    ADS  Article  Google Scholar 

  37. 37.

    Felner, I., Galstyan, E., Lorenz, B., Cao, D., Wang, Y.S., Xue, Y., Chu, C.W.: Phys. Rev. B 67, 134506 (2003)

    ADS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to R. B. Onyancha.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Onyancha, R.B., Shimoyama, J., Singh, S.J. et al. Temperature Dependence Low-Field Microwave Absorption in a Powder Sample of SmFeAs(O,F) Iron Pnictide Superconductor. J Supercond Nov Magn 30, 1097–1102 (2017).

Download citation


  • Josephson junction
  • Low-field microwave absorption
  • Iron pnictide superconductor
  • Inter-particle weak links