Quantum Fluctuations and Vortex-Antivortex Unbinding in the 2D Bcs-Bec Crossover


Very recently, quasi two-dimensional (2D) systems made of attractive fermionic alkali-metal atoms with a widely tunable interaction due to Fano-Feshbach resonances have been realized. In this way, it has been achieved the 2D crossover from the Bardeen-Cooper-Schrieffer regime of weakly-interacting Cooper pairs to the Bose-Einstein condensate regime strongly bound dimers. These experiments pave the way to the investigation of 2D strongly-interacting attractive fermions during the Berezinskii-Kosterlitz-Thouless (BKT) transition from a low-temperature superfluid phase characterized by quasi-condensation to a high-temperature normal phase, where vortex proliferation driven by quantum and thermal fluctuations completely destroys superfluidity. In this paper, we discuss our preliminar theoretical results on the behavior of the BKT critical temperature across the crossover. Our microscopic calculations are based on functional integration taking into account renormalized Gaussian fluctuations and the crucial 2D effect of vortex-antivortex unbinding.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2


  1. 1.

    Annett, J.: Superconductivity, Superfluids and Condensates (Oxford Univ. Press., Oxford, 2004); A.J. Leggett, Quantum Liquids (Oxford Univ. Press, Oxford, 2006)

  2. 2.

    Svistunov, B., Babaev, E., Prokof’ev, N.: Superfluid States of Matter (CRC Press, 2015)

  3. 3.

    Zwerger, W.: The BCS-BEC Crossover and the Unitary Fermi Gas, Lecture Notes in Physics, vol. 836. Springer, Berlin (2012)

  4. 4.

    Girardeau, M.: J. Math. Phys. 1, 516 (1960)

    ADS  MathSciNet  Article  Google Scholar 

  5. 5.

    Lieb, E.H., Liniger, W.: Phys. Rev. 130, 1605 (1963)

    ADS  MathSciNet  Article  Google Scholar 

  6. 6.

    Lieb, E.H.: Phys. Rev. 130, 1616 (1963)

    ADS  MathSciNet  Article  Google Scholar 

  7. 7.

    McGuire, J.B.: J. Math. Phys. 5, 622 (1964)

    ADS  MathSciNet  Article  Google Scholar 

  8. 8.

    Gaudin, M.: Phys. Lett. A 24A, 55 (1967)

    ADS  Article  Google Scholar 

  9. 9.

    Yang, C.N.: Phys. Rev. Lett. 19, 1312 (1967)

    ADS  MathSciNet  Article  Google Scholar 

  10. 10.

    Luther, A., Emery, V.J.: Phys. Rev. Lett. 33, 589 (1974)

    ADS  Article  Google Scholar 

  11. 11.

    Fuchs, J.N., Recati, A., Zwerger, W.: Phys. Rev. Lett. 93, 090408 (2004)

    ADS  Article  Google Scholar 

  12. 12.

    Larkin, A., Varlamov, A.: Theory of Fluctuations in Superconductors (Oxford Univ. Press, Oxford (2005)

    Google Scholar 

  13. 13.

    Makhalov, V., Martiyanov, K., Turlapov, A.: Phys. Rev. Lett. 112, 045301 (2014)

    ADS  Article  Google Scholar 

  14. 14.

    Ries, M.G., et al.: Phys. Rev. Lett. 114, 230401 (2015)

    ADS  Article  Google Scholar 

  15. 15.

    Murthy, P.A., et al.: Phys. Rev. Lett. 115, 010401 (2015)

    ADS  Article  Google Scholar 

  16. 16.

    Boettcher, I., et al.: Phys. Rev. Lett. 116, 045303 (2016)

    ADS  Article  Google Scholar 

  17. 17.

    Salasnich, L., Marchetti, P.A., Toigo, F.: Phys. Rev. A 88, 053612 (2013)

    ADS  Article  Google Scholar 

  18. 18.

    Salasnich, L., Toigo, F.: Phys. Rev. A 91(R), 011604 (2015)

    ADS  MathSciNet  Article  Google Scholar 

  19. 19.

    He, L., Lu, H., Cao, G., Hu, H., Liu, X.-J.: Phys. Rev. A 92, 023620 (2015)

    ADS  Article  Google Scholar 

  20. 20.

    Bighin, G., Salasnich, L.: Phys. Rev. B 93, 014519 (2016)

    ADS  Article  Google Scholar 

  21. 21.

    Salasnich, L., Toigo, F.: Phys. Rep. 640, 1 (2016)

  22. 22.

    Chen, Q., Stajic, J., Tan, S., Levin, K.: Phys. Rep. 412, 1 (2005)

    ADS  Article  Google Scholar 

  23. 23.

    Okazaji, K., et al.: Sci. Rep. 4, 4109 (2014)

    ADS  Google Scholar 

  24. 24.

    Nelson, D.R., Kosterlitz, J.M.: Phys. Rev. Lett. 39, 1201 (1977)

    ADS  Article  Google Scholar 

  25. 25.

    Matsumoto, M., Inotani, D., Ohashi, Y.: Phys. Rev. A 93, 013619 (2016)

    ADS  Article  Google Scholar 

  26. 26.

    Scalapino, D.J.: Rev. Mod. Phys. 84, 1383 (2012)

    ADS  Article  Google Scholar 

  27. 27.

    Perali, A., Neilson, D., Hamilton, A.R.: Phys. Rev. Lett. 110, 146803 (2013)

    ADS  Article  Google Scholar 

  28. 28.

    Hagino, K., Sagawa, H., Carbonell, J., Schuck, P.: Phys. Rev. Lett. 99, 022506 (2007)

    ADS  Article  Google Scholar 

  29. 29.

    Anglani, R., et al.: Rev. Mod. Phys. 86, 509 (2014)

    ADS  Article  Google Scholar 

Download references


This work was partially supported by MIUR through the PRIN Project “Collective Quantum Phenomena: from Strongly-Correlated Systems to Quantum Simulators”.

Author information



Corresponding author

Correspondence to L. Salasnich.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Salasnich, L., Bighin, G. Quantum Fluctuations and Vortex-Antivortex Unbinding in the 2D Bcs-Bec Crossover. J Supercond Nov Magn 29, 3103–3106 (2016). https://doi.org/10.1007/s10948-016-3830-6

Download citation


  • BCS-BEC crossover
  • Ultracold atoms
  • Dimensional regularization