Spin and Charge Susceptibilities of the Two-Orbital Model within the Cluster Perturbation Theory for Fe-Based Materials

Abstract

Cluster perturbation theory is used to calculate band structure, spectral functions, Fermi surface, and spin and charge susceptibilities for the two-orbital model of iron pnictides with the on-site multiorbital Hubbard interactions. Susceptibilities are calculated within the approximation combining the cluster perturbation theory for the self-energy corrections and the random-phase approximation (RPA) for the vertex renormalizations. Calculations for the small values of Hubbard repulsion U ≤ 2 eV confirm that the rigid band approximation and RPA for the spin and charge susceptibilities are suitable approaches for the case of weak interactions.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Kamihara, Y., Watanabe, T., Hirano, M., Hosono, H.: J. Am. Chem. Soc. 130, 3296 (2008)

    Article  Google Scholar 

  2. 2.

    Sadovskii, M.V.: Physics-Uspekhi 51, 1201 (2008)

    ADS  Article  Google Scholar 

  3. 3.

    Paglione, J., Greene, R.L.: Nat. Phys. 6, 645 (2010)

    Article  Google Scholar 

  4. 4.

    Johnston, D.C.: Adv. Phys. 59, 803 (2010)

    ADS  Article  Google Scholar 

  5. 5.

    Mazin, I.I.: Nature (London) 464, 183 (2010)

    ADS  Article  Google Scholar 

  6. 6.

    Wen, H.H., Li, S.: Annu. Rev. Cond. Matter Phys. 2, 121 (2011)

    ADS  MathSciNet  Article  Google Scholar 

  7. 7.

    Stewart, G.R.: Rev. Mod. Phys. 83, 1589 (2011)

    ADS  Article  Google Scholar 

  8. 8.

    Hirschfeld, P.J., Korshunov, M.M., Mazin, I.I.: Rep. Prog. Phys. 74, 124508 (2011)

    ADS  Article  Google Scholar 

  9. 9.

    Hirschfeld, P.J.: C.R. Physique 17, 197 (2016)

    ADS  Article  Google Scholar 

  10. 10.

    Mazin, I.I., Singh, D.J., Johannes, M.D., Du, M.-H.: Phys. Rev. Lett. 101, 057003 (2008)

    ADS  Article  Google Scholar 

  11. 11.

    Graser, S., Maier, T.A., Hirschfeld, P.J., Scalapino, D.J.: New. J. Phys. 11, 025016 (2009)

    ADS  Article  Google Scholar 

  12. 12.

    Kuroki, K., Onari, S., Arita, R., Usui, H., Tanaka, Y., Kontani, H., Aoki, H.: Phys. Rev. Lett. 101, 087004 (2008)

    ADS  Article  Google Scholar 

  13. 13.

    Maiti, S., Korshunov, M.M., Maier, T.A., Hirschfeld, P.J., Chubukov, A.V.: Phys. Rev. Lett. 107, 147002 (2011)

    ADS  Article  Google Scholar 

  14. 14.

    Maiti, S., Korshunov, M.M., Maier, T.A., Hirschfeld, P.J., Chubukov, A.V.: Phys. Rev. B 84, 224505 (2011)

    ADS  Article  Google Scholar 

  15. 15.

    Korshunov, M.M.: Physics-Uspekhi 57, 813 (2014)

    ADS  Article  Google Scholar 

  16. 16.

    Kontani, H., Onari, S.: Phys. Rev. Lett. 104, 157001 (2010)

    ADS  Article  Google Scholar 

  17. 17.

    Onari, S., Kontani, H.: Phys. Rev. Lett. 109, 137001 (2012)

    ADS  Article  Google Scholar 

  18. 18.

    Kordyuk, A.A.: Low Temp. Phys 38, 888 (2012)

    ADS  Article  Google Scholar 

  19. 19.

    Qazilbash, M.M., Hamlin, J.J., Baumbach, R.E., Zhang, L., Singh, D.J., Maple, M.B., Basov, D.N.: Nat. Phys. 5, 647 (2009)

    Article  Google Scholar 

  20. 20.

    Haule, K., Shim, J. H., Kotliar, G.: Phys. Rev. Lett. 100, 226402 (2008)

    ADS  Article  Google Scholar 

  21. 21.

    Skornyakov, S.L., et al.: Phys. Rev. B 80, 092501 (2009)

    ADS  Article  Google Scholar 

  22. 22.

    Skornyakov, S.L., et al.: Phys. Rev. B 81, 174522 (2010)

    ADS  Article  Google Scholar 

  23. 23.

    Yin, Z.P., Haule, K., Kotliar, G.: Nat. Phys. 7, 294 (2011)

    Article  Google Scholar 

  24. 24.

    Kotliar, G., Savrasov, S.Y., Palsson, G., Biroli, G.: Phys. Rev. Lett. 87, 186401 (2001)

    ADS  Article  Google Scholar 

  25. 25.

    Hettler, M.H., Tahvildar-Zadeh, A.N., Jarrell, M., Pruschke, T., Krishnaumurthy, H.R.: Phys. Rev. B 58, R7475 (1998)

    ADS  Article  Google Scholar 

  26. 26.

    Lichtenstein, A.I., Katsnelson, M.I.: Phys. Rev. B 62, R9283 (2000)

    ADS  Article  Google Scholar 

  27. 27.

    Maier, T.A., Jarrell, M., Pruschke, T., Hettler, M.H.: Rev. Mod. Phys. 77, 1027 (2005)

    ADS  Article  Google Scholar 

  28. 28.

    Senechal, D., Perez, D., Pioro-Ladriere, M.: Phys. Rev. Lett. 84, 522 (2000)

    ADS  Article  Google Scholar 

  29. 29.

    Senechal, D., Perez, D., Plouffe, D.: Phys. Rev. B 66, 075129 (2002)

    ADS  Article  Google Scholar 

  30. 30.

    Raghu, S., Qi, X.-L., Liu, C.-X., Scalapino, D.J., Zhang, S.-C.: Phys. Rev. B 77(R), 220503 (2008)

    ADS  Article  Google Scholar 

  31. 31.

    Bianconi, A.: Nat. Phys. 9, 536 (2013)

    MathSciNet  Article  Google Scholar 

  32. 32.

    Bianconi, A.: Int. J. Mod. Phys. B 14, 3289 (2000)

    ADS  Article  Google Scholar 

  33. 33.

    Kugel, K.I., Rakhmanov, A.L., Sboychakov, A.O., Poccia, N., Bianconi, A.: Phys. Rev. B 78, 165124 (2008)

    ADS  Article  Google Scholar 

  34. 34.

    Castellani, C., Natoli, C.R., Ranninger, J.: Phys. Rev. B 18, 4945 (1978)

    ADS  Article  Google Scholar 

  35. 35.

    Oleś, A.M.: Phys. Rev. B 28, 327 (1983)

    ADS  Article  Google Scholar 

  36. 36.

    Nikolaev, S.V., Ovchinnikov, S.G.: JETP 111, 635 (2010)

    ADS  Article  Google Scholar 

  37. 37.

    Ovchinnikov, S.G., Nikolaev, S.V.: Pis’ma v ZhETP 93, 575 (2011)

    Google Scholar 

  38. 38.

    Nikolaev, S.V., Ovchinnikov, S.G.: JETP 114, 118 (2012)

    ADS  Article  Google Scholar 

  39. 39.

    Daghofer, M., Moreo, A., Riera, J.A., Arrigoni, E., Scalapino, D.J., Dagotto, E.: Phys. Rev. Lett. 101, 237004 (2008)

    ADS  Article  Google Scholar 

  40. 40.

    Yu, R., Trinh, K.T., Moreo, A., Daghofer, M., Riera, J.A., Haas, S., Dagotto, E.: Phys. Rev. B 79, 104510 (2009)

    ADS  Article  Google Scholar 

Download references

Acknowledgments

We acknowledge partial support by RFBR (grants 12-02-31534, 13-02-01395, and 16-02-00098), and Government Support of the Leading Scientific Schools of the Russian Federation (NSh-7559.2016.2).

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. M. Korshunov.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nikolaev, S.V., Korshunov, M.M. Spin and Charge Susceptibilities of the Two-Orbital Model within the Cluster Perturbation Theory for Fe-Based Materials. J Supercond Nov Magn 29, 3093–3097 (2016). https://doi.org/10.1007/s10948-016-3784-8

Download citation

Keywords

  • Fe-based superconductors
  • Mutiorbital models
  • Cluster perturbation theory