Journal of Superconductivity and Novel Magnetism

, Volume 30, Issue 1, pp 251–260 | Cite as

Structural, Electronic, and Magnetic Properties of Bimetallic NimNbn(m + n ≤ 8) Clusters: First Principle Study

  • Mihai Deng
  • Zihua Xin
  • Xiao Yan
  • Junxian Liu
  • M. Yu
Original Paper

Abstract

Structural, electronic, and magnetic properties of bimetallic NimNbn(m + n≤8) clusters have been investigated using the particle swarm optimization coupled with density functional theory. Ninety-seven stable structures of Ni mNb n clusters were found. Among these Ni mNb n clusters, most of the ground state of bimetallic clusters prefers compact structures when m + n>3. The HOMO–LUMO gaps of these bimetallic Ni mNb n clusters were found in the range of 0.1–0.5 eV. The exchange splitting exists in most of these binary clusters and results in non-zero magnetization in these clusters. Most of the clusters show their magnetic moment strongly depending on the size, the symmetry, the configuration, and the composition. An interesting finding is that the magnetic moment per atom in NiNb and Ni2Nb clusters shows a larger value (i.e., 1.5 and 1.0 μB) than that of the corresponding size of pure Ni clusters.

Keywords

Bimetallic clusters Binding energy HOMO–LUMO gaps Magnetics 

References

  1. 1.
    Billas, I.M., Châtelain, A., de Heer, W.A.: Science 265, 1682 (1994)ADSCrossRefGoogle Scholar
  2. 2.
    Alonso, J.A.: Chem. Rev. 100, 637 (2000)CrossRefGoogle Scholar
  3. 3.
    Parida, P., Kundu, A., Pati, S.K.: J. Clust. Sci. 20, 355 (2009)CrossRefGoogle Scholar
  4. 4.
    Aguilera-Granja, F., García-Fuente, A., Vega, A.: Phys. Rev. B 78, 1 (2008)Google Scholar
  5. 5.
    Piotrowski, M.J., Piquini, P.: Phys. Rev. B. 81(2008), 1 (2010)Google Scholar
  6. 6.
    Soltani, A., Bouderbala, W., Boudjahem, A.: J. Clust. Sci. 27, 715 (2016)CrossRefGoogle Scholar
  7. 7.
    Louderback, J.G., Cox, A.J., et al.: Z. Phys. D. 26, 301 (1993)ADSCrossRefGoogle Scholar
  8. 8.
    Billas, I.M., Châtelain, A., de Heer, W.A.: Science 265, 1682 (1994)ADSCrossRefGoogle Scholar
  9. 9.
    Khanna, S.N., Linderoth, S.: Phys. Rev. Lett. 67, 742 (1991)ADSCrossRefGoogle Scholar
  10. 10.
    Kumar, V., Kawazoe, Y.: Phys. Rev. B. 65, 1 (2002)Google Scholar
  11. 11.
    Parks, E.K., Winter, B.J., et al.: J. Chem. Phys. 94, 1882 (1991)ADSCrossRefGoogle Scholar
  12. 12.
    Pinegar, J.C., Langenberg, J.D., et al.: J. Chem. Phys. 102, 666 (1995)ADSCrossRefGoogle Scholar
  13. 13.
    Ganteför, G., Eberhardt, W.: Phys. Rev. Lett. 76, 4975 (1996)ADSCrossRefGoogle Scholar
  14. 14.
    Desmarais, N., Jamorski, C., et al.: Phys. Lett. 294, 480 (1998)Google Scholar
  15. 15.
    Xie, Z., Ma, Q.M., et al.: Phys. Lett. A. 342, 459 (2005)ADSCrossRefGoogle Scholar
  16. 16.
    Futschek, T., Hafner, J., Marsman, M.: J. Phys. Condens. Matter. 18, 9703 (2006)ADSCrossRefGoogle Scholar
  17. 17.
    Reuse, F.A., Khana, S.N.: Chem. Phys. Lett. 234, 77 (1995)ADSCrossRefGoogle Scholar
  18. 18.
    Castro, M., Jamorski, C., Salahub, D.R.: Chem. Phys. Lett. 271, 133 (1997)ADSCrossRefGoogle Scholar
  19. 19.
    Michelini, M.C., Diez, R.P., Jubert, A.H.: Int. J. Quantum Chem. 85, 22 (1999)CrossRefGoogle Scholar
  20. 20.
    Li, J., Wang, H., Liu, J., Ruan, J.: Mater.: Sci. Eng. A. 609, 235 (2014)Google Scholar
  21. 21.
    Park, E.S., Kim, D.H., et al.: J. Non. Cryst. Solids 351, 1232 (2005)ADSCrossRefGoogle Scholar
  22. 22.
    Weng, F., Yu, H., et al.: J. Mater. Res. 29, 2596 (2014)ADSCrossRefGoogle Scholar
  23. 23.
    Hales, D.A., Lian, L., Armentrout, P.B.: Int. J. Mass Spectrom. Ion Process. 102, 269 (1990)ADSCrossRefGoogle Scholar
  24. 24.
    Eberhart, R., Kennedy, J.: In: Proceedings of the Sixth International Symposium on Micro Machine and Human Science, p 39 (1995)Google Scholar
  25. 25.
    Kennedy, J., Eberhart, R.: In: Proceedings, IEEE International Conference, p 1942 (1995)Google Scholar
  26. 26.
    Wang, Y., Lv, J., Zhu, L., Ma, Y.: Comput. Phys. Commun. 183, 2063 (2012)ADSCrossRefGoogle Scholar
  27. 27.
    Wang, Y., Lv, J., et al.: Phys. Rev. B. 82, 094116 (2010)ADSCrossRefGoogle Scholar
  28. 28.
    Lv, J., Wang, Y., et al.: J. Chem. Phys. 137, 084104 (2012)ADSCrossRefGoogle Scholar
  29. 29.
    Perdew, J., Burke, K., Ernzerhof, M.: Phys. Rev. Lett. 77, 3865 (1996)ADSCrossRefGoogle Scholar
  30. 30.
    Kresse, G.: Phys. Rev. B. 59, 1758 (1999)ADSCrossRefGoogle Scholar
  31. 31.
    Kresse, G.: Phys. Rev. B. 54, 11169 (1996)ADSCrossRefGoogle Scholar
  32. 32.
    Kresse, G., Furthmüller, J.: Comput. Mater. Sci. 6, 15 (1996)CrossRefGoogle Scholar
  33. 33.
    Bader, R.F.W., Matta, C.F.: J. Phys. Chem. A. 108, 8385 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Mihai Deng
    • 1
  • Zihua Xin
    • 1
    • 2
  • Xiao Yan
    • 1
  • Junxian Liu
    • 1
  • M. Yu
    • 3
  1. 1.Department of PhysicsShanghai UniversityShanghaiChina
  2. 2.Shanghai Key Laboratory of High Temperature SuperconductorsShanghaiChina
  3. 3.Department of Physics and AstronomyUniversity of LouisvilleLouisvilleUSA

Personalised recommendations