Journal of Superconductivity and Novel Magnetism

, Volume 30, Issue 2, pp 297–304 | Cite as

Search for New Superconductors: an Electro-Magnetic Phase Transition in an Iron Meteorite Inclusion at 117 K

  • S. Guénon
  • J. G. Ramírez
  • Ali C. Basaran
  • J. Wampler
  • M. Thiemens
  • Ivan K. Schuller
Original Paper


The discovery of superconductivity in pnictides and iron chalcogenides inspires the search for new iron-based superconducting phases. Iron-rich meteorites present a unique opportunity for this search because they contain a broad range of compounds produced under extreme growth conditions. We investigated a natural iron sulfide-based material (troilite) inclusion with its associated minerals in the iron meteorite (Fe, Ni), Tlacotepec. Tlacotepec cooled over the course of 10 6–10 7 years in an asteroidal core under high pressure while insoluble sulfur-rich materials segregated into inclusions within the Fe–Ni core, synthesizing minerals under conditions not possible in the laboratory. The search for superconductivity in these heterogeneous materials requires a technique capable of detecting minute amounts of a superconducting phase embedded in a non-superconducting matrix. We used magnetic field modulated microwave spectroscopy (MFMMS), the most sensitive, selective, and non-destructive technique, to search for superconductivity in heterogeneous systems. Here, we report the observation of an electro-magnetic phase transition (EMPT) at 117 K that produces a unique MFMMS response. A pronounced and reproducible peak proves the appearance of an EMPT at 117 K. The temperature of this transition is not influenced by moderate magnetic fields up to 1400 Oe. Further, hysteretic isothermal field sweep loops are typical of the field sweep loops caused by flux trapping in high T c superconductors. Although the compound responsible for the peak in the MFMMS spectra was not identified, our results indicate that it is a material heterogeneously distributed over the inclusion and possibly an iron sulfide-based phase.


Superconductivity Extraterrestrial materials Microwave absorption Iron sulfide 



This research was supported by an Air Force Office of Scientific Research (AFOSR) grant FA9550-14-1-0202. We thank Neil Dilley from Quantum Design for helping us with the SQUID and AC susceptibility measurements. S.G. thanks József Fortágh for giving him the opportunity to finish this work. We thank Harold Weinstock for his original idea on the search for superconductivity in unconventional materials. J.G.R. kindly acknowledges support from Fondo de Apoyo para Profesores Asistentes (FAPA) program through Facultad de Ciencias and Vicerrectoria de Investigaciones of Universidad de los Andes, Bogotá Colombia.


  1. 1.
    Kamihara, Y., Hiramatsu, H., Hirano, M., Kawamura, R., Yanagi, H., Kamiya, T., Hosono, H.: Iron-based layered superconductor: LaOFeP. J. Am. Chem. Soc. 128, 10012–10013 (2006)CrossRefGoogle Scholar
  2. 2.
    Chen, X. H., Wu, T., Wu, G., Liu, R. H., Chen, H., Fang, D. F.: Superconductivity at 43 K in SmFeAsO1−xFx. Nature. 453, 761–762 (2008)ADSCrossRefGoogle Scholar
  3. 3.
    Paglione, J., Greene, R. L.: High-temperature superconductivity in iron-based materials. Nat. Phys. 6, 645–658 (2010)CrossRefGoogle Scholar
  4. 4.
    Hsu, F. -C., Luo, J. -Y., Yeh, K. -W., Chen, T. -K., Huang, T. -W., Wu, P. M., Lee, Y. -C., Huang, Y. -L., Chu, Y. -Y., Yan, D. -C., Wu, M. -K.: Superconductivity in the PbO-type structure α-FeSe. Proc. Natl. Acad. Sci. USA. 105, 14262–14264 (2008)ADSCrossRefGoogle Scholar
  5. 5.
    Fang, M. H., Pham, H. M., Qian, B., Liu, T. J., Vehstedt, E. K., Liu, Y., Spinu, L., Mao, Z. Q.: Superconductivity close to magnetic instability in Fe(Se1−xTex)0.82. Phys. Rev. B. 78, 224503 (2008)ADSCrossRefGoogle Scholar
  6. 6.
    Yeh, K. -W., Huang, T. -W., Huang, Y. -L., Chen, T. -K., Hsu, F. -C., Wu, P. M., Lee, Y. -C., Chu, Y. -Y., Chen, C. -L., Luo, J. -Y., Yan, D. -C., Wu, M. -K.: Tellurium substitution effect on superconductivity of the α-phase iron selenide. Europhys. Lett. 84, 37002 (2008)ADSCrossRefGoogle Scholar
  7. 7.
    Mizuguchi, Y., Tomioka, F., Tsuda, S., Yamaguchi, T., Takano, Y.: Superconductivity in S-substituted FeTe. Appl. Phys. Lett. 94, 012503 (2009)ADSCrossRefGoogle Scholar
  8. 8.
    Mizuguchi, Y., Tomioka, F., Tsuda, S., Yamaguchi, T., Takano, Y.: Superconductivity at 27 K in tetragonal FeSe under high pressure. Appl. Phys. Lett., 93 (2008)Google Scholar
  9. 9.
    Sidorov, V. A., Tsvyashchenko, A. V., Sadykov, R. A.: Interplay between magnetism and superconductivity and the appearance of a second superconducting transition in α-FeSe at high pressure. J. Phys.: Condens. Matter. 21, 415701 (2009)Google Scholar
  10. 10.
    de Souza, M., Haghighirad, A. A., Tutsch, U., Assmus, W., Lang, M.: Synthesis, structural and physical properties of δ- FeSe1−x. Eur. Phys. J. B. 77, 101–107 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    Onnes, H. K.: Further experiments with liquid helium. C. On the change of electric resistance of pure metals at very low temperatures etc. IV. The resistance of pure mercury at helium temperatures. KNAW proccedens 13 II, 1274–1276 (1911)Google Scholar
  12. 12.
    Meissner, W., Ochsenfeld, R.: Ein neuer Effekt bei Eintritt der supraleitfähigkeit. Naturwissenschaften. 21, 787–788 (1933)ADSCrossRefGoogle Scholar
  13. 13.
    Dulčić, A., Leontić, B., Perić, M., Rakvin, B.: Microwave study of Josephson junctions in Gd-Ba-Cu-O compounds. Europhys. Lett. 4, 1403–1407 (1987)ADSCrossRefGoogle Scholar
  14. 14.
    Kim, B. F., Bohandy, J. J., Mooriani, K., Adrian, F. J.: A novel microwave technique for detection of superconductivity. J. Appl. Phys. 63, 2029–2032 (1988)ADSCrossRefGoogle Scholar
  15. 15.
    Glarum, S., Marshall, J., Schneemeyer, L.: Field-dependent microwave absorption in high-TC superconductors. Phys. Rev. B. 37, 7491–7495 (1988)ADSCrossRefGoogle Scholar
  16. 16.
    Haddon, R. C., Glarum, S. H., Chichester, S. V., Ramirez, A. P., Zimmerman, N. M.: Microwave-loss studies of organic superconductors. Phys. Rev. B. 43, 2642–2647 (1991)ADSCrossRefGoogle Scholar
  17. 17.
    Hebard, A. F., Rosseinsky, M. J., Haddon, R. C., Murphy, D. W., Glarum, S. H., Palstra, T. T. M., Ramirez, A. P., Kortan, A. R.: Superconductivity at 18 K in potassium-doped C60. Nature. 350, 600–601 (1991)ADSCrossRefGoogle Scholar
  18. 18.
    Ramírez, J.G., Basaran, A.C., de la Venta, J., Pereiro, J., Schuller, I.K.: Magnetic field modulated microwave spectroscopy across phase transitions and the search for new superconductors. Rep. Prog. Phys. 77, 093902 (2014)ADSCrossRefGoogle Scholar
  19. 19.
    Guenon, S., Ramirez, J. G., Basaran, A. C., Wampler, J., Thiemens, M., Taylor, S., Schuller, I. K.: Search for superconductivity in micrometeorites. Sci. Rep. 4, 7333 (2014)ADSCrossRefGoogle Scholar
  20. 20.
    Campbell, A. J., Humayun, M.: Compositions of group IVB iron meteorites and their parent melt. Geochim. Cosmochim. Acta. 69, 4733–4744 (2005)ADSCrossRefGoogle Scholar
  21. 21.
    Walker, R. J., McDonough, W. F., Honesto, J., Chabot, N. L., McCoy, T. J., Ash, R. D., Bellucci, J. J.: Modeling fractional crystallization of group IVB iron meteorites. Geochim. Cosmochim. Acta. 72, 2198–2216 (2008)ADSCrossRefGoogle Scholar
  22. 22.
    Yang, J., Goldstein, J. I., Michael, J. R., Kotula, P. G., Scott, E. R. D.: Thermal history and origin of the IVB iron meteorites and their parent body. Geochim. Cosmochim. Acta. 74, 4493–4506 (2010)ADSCrossRefGoogle Scholar
  23. 23.
    Scott, E. R. D.: Chemical fractionation in iron meteorites and its interpretation. Geochim. Cosmochim. Acta. 36, 1205–1236 (1972)ADSCrossRefGoogle Scholar
  24. 24.
    Scott, E. R. D., Wasson, J. T.: Classification and properties of iron meteorites. Rev. Geophysics. 13, 527 (1975)ADSCrossRefGoogle Scholar
  25. 25.
    Buchwald, V. F.: Handbook of iron meteorites: their history, distribution, composition and structure, published for the Center for Meteorite Studies at Arizona State University. University of California Press (1975)Google Scholar
  26. 26.
    Kelly, W. R., Wasserburg, G. J.: Evidence for the existence of 107Pd in the early solar system. Geophys. Res. Lett. 5, 1079–1082 (1978)ADSCrossRefGoogle Scholar
  27. 27.
    Kaiser, T., Wasserburg, G. J., Kelly, W. R.: Hoba and Tlacotepec: two new meteorites with isotopically anomalous Ag. Meteoritics 15, 257–391 (1980)CrossRefGoogle Scholar
  28. 28.
    Chen, J. H., Wasserburg, G. J.: The isotopic composition of silver and lead in two iron meteorites: Cape York and Grant. Geochim. Cosmochim. Acta. 47, 1725–1737 (1983)ADSCrossRefGoogle Scholar
  29. 29.
    Kracher, A., Kurat, G., Buchwald, V. F.: Cape York: The extraordinary mineralogy of an ordinary iron meteorite and its implication for the genesis of III AB irons. Geochem J. 11, 207–217 (1977)CrossRefGoogle Scholar
  30. 30.
    Mata-Zamora, M. E., Montiel, H., Alvarez, G., Saniger, J. M., Zamorano, R., Valenzuela, R.: Microwave non-resonant absorption in fine cobalt ferrite particles. J. Magn. Magn. Mater. 316, e532–e534 (2007)ADSCrossRefGoogle Scholar
  31. 31.
    Blazey, K. W., Muller, K. A., Bednorz, J. G., Berlinger, W., Amoretti, G., Buluggiu, E., Vera, A., Matacotta, F. C.: Low-field microwave-absorption in the superconducting copper oxides. Phys. Rev. B. 36, 7241–7243 (1987)ADSCrossRefGoogle Scholar
  32. 32.
    Sastry, M. D., Ajayakumar, K. S., Kadam, R. M., Phatak, G. M., Iyer, R. M.: Low-field microwave-absorption in Gd2cuo4—similarity and contrast with high-temperature superconducting materials. Phys. C. 170, 41–45 (1990)ADSCrossRefGoogle Scholar
  33. 33.
    Aswal, D. K., Singh, A., Kadam, R. M., Bhide, M. K., Page, A. G., Bhattacharya, S., Gupta, S. K., Yakhmi, J. V., Sahni, V. C.: Ferromagnetic resonance studies of nanocrystalline La0.6Pb0.4MnO3 thin films. Mater. Lett. 59, 728–733 (2005)CrossRefGoogle Scholar
  34. 34.
    Owens, F. J.: Theory of line shape of nonresonant microwave absorption in granular composites of copper oxide superconductors. Phys. C. 171, 25–30Google Scholar
  35. 35.
    Ebner, C., Stroud, D.: Diamagnetic susceptibility of superconducting clusters spin-glass behavior. Phys. Rev. B. 31, 165–171 (1985)ADSCrossRefGoogle Scholar
  36. 36.
    Estève, D., Martinis, J. M., Urbina, C., Devoret, M. H., Collin, G., Monod, P., Ribault, M., Revcolevschi, A.: Observation of the A.C. Josephson effect inside copper-oxide-based superconductors. Europhys. Lett. 3, 1237–1242 (1987)ADSCrossRefGoogle Scholar
  37. 37.
    Lai, X., Zhang, H., Wang, Y., Wang, X., Zhang, X., Lin, J., Huang, F.: Observation of superconductivity in tetragonal FeS. J. Am. Chem. Soc. 137, 10148–10151 (2015)CrossRefGoogle Scholar
  38. 38.
    McQueen, T. M., Huang, Q., Ksenofontov, V., Felser, C., Xu, Q., Zandbergen, H., Hor, Y. S., Allred, J., Williams, A. J., Qu, D., Checkelsky, J., Ong, N. P., Cava, R. J.: Extreme sensitivity of superconductivity to stoichiometry in Fe1 + δSe. Phys. Rev. B. 79, 014522 (2009)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • S. Guénon
    • 1
    • 2
  • J. G. Ramírez
    • 1
    • 3
  • Ali C. Basaran
    • 1
    • 4
  • J. Wampler
    • 1
  • M. Thiemens
    • 5
  • Ivan K. Schuller
    • 1
  1. 1.Department of Physics and Center for Advanced NanoscienceUniversity of CaliforniaSan DiegoUSA
  2. 2.CQ Center for Collective Quantum Phenomena and their Applications in LISA + , Physikalisches InstitutEberhard Karls Universität TübingenTübingenGermany
  3. 3.Department of PhysicsUniversidad de los AndesBogotáColombia
  4. 4.Department of PhysicsGebze Technical UniversityGebzeTurkey
  5. 5.Department of Chemistry and BiochemistryUniversity of CaliforniaSan DiegoUSA

Personalised recommendations