Skip to main content
Log in

An Exponential Model for Critical Current Density Through a Low-Angle Grain Boundary in a High-T c Superconductor

  • Letter
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

An analytical investigation is presented to display the distribution of critical current flow through a low-angle grain boundary in a high-T c superconductor such as YBCO or Bi-2212 film. When a superconductor is subjected to a transport current or a magnetic field, the fluxoids are redistributed between the dislocations which comprise a low-angle grain boundary. A model considering the elastic interaction between a flux line and an edge dislocation is developed in this paper. Results of our model are consistent with those of the classic exponential model, while for high-angle grain boundaries with the misorientation angles 𝜃 > 4, this model is invalid. It is helpful by using our model to understand the mechanisms of the effect of low-angle grain boundaries on critical current density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Dimos, D., Chaudhari, P., Mannhart, J., LeGoues, F.K.: Phys. Rev. Lett. 61, 219 (1988)

    Article  ADS  Google Scholar 

  2. Hirth, J.B., Lothe, J.: Theory of Dislocations. McGraw-Hill, New York (1968)

    Google Scholar 

  3. Sutton, A.P., Balluffi, R.W.: Interfaces in Crystalline Materials. Clarendon, Oxford (1995)

    Google Scholar 

  4. Hilgenkamp, H., Mannhart, J.: Rev. Mod. Phys. 74, 485–549 (2002)

    Article  ADS  Google Scholar 

  5. Dimos, D., Chaudhari, P., Mannhart, J., LeGoues, F.K.: Phys. Rev. Lett. 61, 219–222 (1988)

    Article  ADS  Google Scholar 

  6. Chaudhari, P., Dimos, D., Mannhart, J.: Critical currents in single-crystal and bicrystal films. In: Bednorz, J.G., Muller, K.A. (eds.) Earlier and Recent Aspects of Superconductivity, pp. 201–207. Springer, Berlin (1990)

  7. Gurevich, A., Pashitskii, E.A.: Phys. Rev. B 57, 13878 (1998)

    Article  ADS  Google Scholar 

  8. Graser, S., Hirschfeld, P.J., Kopp, T., Gutser, R., Andersen, B.M., Mannhart, J.: Nat. Phys. 6, 609 (2010)

    Article  Google Scholar 

  9. Campbell, A.M., Evetts, J.E.: Adv. Phys. 21, 199–428 (1972)

    Article  ADS  Google Scholar 

  10. Pande, C.S., Suenaga, M.: Appl. Phys. Lett. 29, 443 (1976)

    Article  ADS  Google Scholar 

  11. Yu, H.Y., Pande, C.S.: J. Appl. Phys. 104, 043917 (2008)

    Article  ADS  Google Scholar 

  12. Jiang, L., Xu, W.W., Hua, T., Yu, M., An, D.Y., Chen, J., Jin, B.B., Kang, L., Wu, P.H.: Sci. China Technol. Sci. 58, 493–498 (2015)

    Article  Google Scholar 

  13. Gou, X.F., Zhu, G.: Chin. Phy. Lett. 32, 037401 (2015)

    Article  ADS  Google Scholar 

  14. van der Lann, D.C., Haugan, T.J., Barnes, P.N., Abraimov, D., Kametani, F., Larbalestier, D.C., Rupich, M.W.: Supercond. Sci. Technol. 23, 014004 (2010)

    Article  ADS  Google Scholar 

  15. van der Lann, D.C., Ekin, J.W.: Appl. Phys. Lett. 90, 052506 (2007)

    Article  ADS  Google Scholar 

  16. Yue, D., Zhang, X., Zhou, J., Zhou, Y.: Appl. Phys. Lett. 103, 232602 (2013)

    Article  ADS  Google Scholar 

  17. Carmody, M., Marks, L.D., Merkle, K.L.: Phys. C 370, 228–238 (2002)

    Article  ADS  Google Scholar 

  18. Wolf, F.A., Graser, S., Loder, F.: Phys. Rev. Lett. 108, 117002 (2012)

    Article  ADS  Google Scholar 

  19. Klie, R.F., Buban, J.P., Varela, M., Franceschetti, A., Jooss, C., Zhu, Y., Browning, N.D., Pabtelides, S.T., Pennycook, J.: Nat. Lett. 435, 475–478 (2005)

    Article  ADS  Google Scholar 

  20. Dew-Hughes, D.: Low Temp. Phys. 27, 967–979 (2001)

    Article  Google Scholar 

  21. Coffey, M.W.: Phys. Rev. B 49, 9774 (1994)

    Article  ADS  Google Scholar 

  22. Ovid’ko, I.A.: J. Phys.: Condens. Matter 13, L97–L103 (2001)

    Google Scholar 

Download references

Acknowledgments

This research was partially funded by the Natural Science Foundation of China (Nos. 11402073 and 11372096), the China Postdoctoral Science Foundation (No. 2013M531260), the Fund of Natural Science Foundation of Jiangsu Province (No. BK20130824), and the Program for Research Fund for the Doctoral Program of Higher Education of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Xue.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, F., Gou, X. An Exponential Model for Critical Current Density Through a Low-Angle Grain Boundary in a High-T c Superconductor. J Supercond Nov Magn 29, 2221–2224 (2016). https://doi.org/10.1007/s10948-016-3608-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-016-3608-x

Keywords

Navigation