Advertisement

Journal of Superconductivity and Novel Magnetism

, Volume 29, Issue 8, pp 2195–2201 | Cite as

Fermi Surfaces of Compensated and Uncompensated Metals: GGA+U+SO Comparative Ab Initio Study

  • Kh. Dine
  • A. ZaouiEmail author
  • A. Benidris
  • M. Bejar
  • M. Ameri
  • A. Boukortt
  • B. Bouhafs
Original Paper
  • 188 Downloads

Abstract

Band structures and Fermi surfaces of RSn 3 (R= Sc, Y, La, Yb, Lu) nonmagnetic intermetallic compounds have been investigated using the generalized gradient approximation. The spin-orbit coupling (SOC) was included using a full relativistic basis. An attentive study was established on the Fermi region through the band structure with character. The calculations show that the antibonding states formed by R−5d and Sn-5p have an interest role in the superconductivity in RSn 3 systems. GGA + U+SO calculations showed that YbSn 3 is a compensated metal while the rest of the intermetallic compounds RSn 3 (R = Sc, Y, La, and Lu) are uncompensated metals. The Hubbard correction and the spin-orbit coupling are found to be necessary requirements for more understanding of this kind of materials through an accurate description of their electronic structure.

Keywords

Intermetallics Density functional theory Ab initio calculations Band structure Fermi surfaces 

References

  1. 1.
    Gambino, R.J., Stemple, N.R., Toxen, A.M.: J. Phys. Chem. Solids 29, 295 (1968)ADSCrossRefGoogle Scholar
  2. 2.
    Bucher, E., Andres, K., Maita, J.P., Hull, Jr.G.W.: Helv. Phys. Acta 41, 723 (1968)Google Scholar
  3. 3.
    Kawashima, K., Maruyama, M., Fukuma, M., Akimitsu, J.: Phys. Rev. B 82, 094517 (2010)ADSCrossRefGoogle Scholar
  4. 4.
    Shenoy, G.K., Dunlap, B.D., Kalvius, G.M., Toxen, A.M., Gambino, R.J.: J. Appl. Phys. 41, 1317 (1970)ADSCrossRefGoogle Scholar
  5. 5.
    Ram, S., Kanchana, V., Vaitheeswaran, G., Svane, A., Dugdale, S.B., Christensen, N.E.: Phys. Rev. B 85, 174531 (2012)ADSCrossRefGoogle Scholar
  6. 6.
    Dugdale, S.B.: Phys. Rev. B 83, 012502 (2011)ADSCrossRefGoogle Scholar
  7. 7.
    Hasegawa, A.: J. Phys. Soc. Jpn. 50, 3313 (1981)ADSCrossRefGoogle Scholar
  8. 8.
    Boulet, R.M., Jan, J.P., Skriver, H.L.: J. Phys. F 12, 293 (1982)ADSCrossRefGoogle Scholar
  9. 9.
    Hasegawa, A., Yamagami, H.: J. Phys. Soc. Jpn. 60, 1654 (1991)ADSCrossRefGoogle Scholar
  10. 10.
    Tatetsu, Y., Maehira, T.: J. Physical Soc. Jpn. 82, 034709 (2013)ADSCrossRefGoogle Scholar
  11. 11.
    Sakamoto, I., Ohara, S., Oguro, I., Maruno, S.: Phys. B 230-232, 286–289 (1997)ADSCrossRefGoogle Scholar
  12. 12.
    Shafiq, M., Ahmad, I., Asadabadi, S.J.: J. Appl. Phys. 116, 103905 (2014)ADSCrossRefGoogle Scholar
  13. 13.
    Mori, A., Miura, Y., Tsutsumi, H., Mitamura, K., Hagiwara, M., Sugiyama, K., Hirose, Y., Honda, F., Takeuchi, T., Nakamura, A., Hiranaka, Y., Hedo, M., Nakama, T., Ōnuki, Y.: J. Phys. Soc. Jpn. 83, 024008 (2014)ADSCrossRefGoogle Scholar
  14. 14.
    Benidris, A., Zaoui, A., Belhadj, M., Djermouni, M., Kacimi, S.: J. Supercond. Nov. Magn. 28, 2215–2222 (2015)CrossRefGoogle Scholar
  15. 15.
    Miller, K., Hall, H.T.: Inorg. Chem. 11, 1188 (1972)CrossRefGoogle Scholar
  16. 16.
    Palenzona, A., Cirafici, S.: J. Phase Equilibr. 12, 690 (1991)CrossRefGoogle Scholar
  17. 17.
    Harris, I.R., Raynor, G.V.: J. Less-Common. Met. 9, 7 (1965)CrossRefGoogle Scholar
  18. 18.
    Blaha, P., Schwarz, K., Madsen, G.K.H., Kvasnicka, D., Luitz, J.: Wien2k, an Augmented Plane Wave plus Local Orbitals Program for Calculating Crystal Properties. Vienna University of Technology, Vienna (2001)Google Scholar
  19. 19.
    Sjöstedt, E., Nordstrom, L., Singh, D.J.: Solid State Commun. 114, 15 (2000)ADSCrossRefGoogle Scholar
  20. 20.
    Perdew, J.P., Burke, K., Ernzerhof, M.: Phys. Rev. Lett. 77, 3865 (1996)ADSCrossRefGoogle Scholar
  21. 21.
    Anisimov, V.I., Zaanen, J., Andersen, O.K.: Phys. Rev. B 44, 943 (1991)ADSCrossRefGoogle Scholar
  22. 22.
    Murnaghan, F.D.: Proc. Natl. Acad. Sci. U.S.A. 30, 5390 (1944)Google Scholar
  23. 23.
    Tsuchida, T., Wallace, W.E.: J. Phys. Chem. 43, 3811 (1965)CrossRefGoogle Scholar
  24. 24.
    Weitzer, E., Hiebl, K., Rogl, R.: J. Solid State Chem. 98, 291 (1992)ADSCrossRefGoogle Scholar
  25. 25.
    Lethuillier, P., Pierre, J., Knorr, K., Drexel, W.: J. Phys. 36, 329 (1975)CrossRefGoogle Scholar
  26. 26.
    Klaasse, J.C.P., Mattens, W.C.M., De Boer, E.R., De Châtel, P.E.: Phys. B+C 86-88, 234 (1977)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Kh. Dine
    • 1
  • A. Zaoui
    • 2
    Email author
  • A. Benidris
    • 2
  • M. Bejar
    • 3
  • M. Ameri
    • 4
  • A. Boukortt
    • 5
  • B. Bouhafs
    • 1
  1. 1.Modelling and Simulation in Materials Science LaboratoryDjillali Liabès University of Sidi Bel-AbbèsSidi Bel-AbbèsAlgeria
  2. 2.Laboratoire de Physique Computationnelle des MatériauxUniversité Djillali Liabès de Sidi Bel-AbbèsSidi Bel-AbbèsAlgeria
  3. 3.Laboratoire de Physique Appliquée, Faculté des SciencesUniversité de SfaxSfaxTunisia
  4. 4.Laboratoire Physico-Chimie des Matériaux AvancésUniversité Djillali Liabès de Sidi Bel-AbbèsSidi Bel-AbbèsAlgeria
  5. 5.Laboratoire d’Elaboration et Caractérisation Physico Mécanique et Métallurgique des Matériaux (ECP3M), Département de Génie Electrique, Faculté des Sciences et de la TechnologieUniversité Abdel Hamid Ibn Badis de MostaganemMostaganemAlgeria

Personalised recommendations