Skip to main content
Log in

Structural Investigation and Zero-Field-Cooled Exchange Bias in Nanocrystalline LaFeO3

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

In the present work, synthesis of nanocrystalline LaFeO3 by using a mechanochemical activation (ball milling) method with oxide precursors (La2 O 3 and Fe2 O 3) at low temperature is discussed. The thermal and X-ray diffraction studies were used to analyze the formation of intermediate phases during the growth of LaFeO3. The single crystallographic phase of LaFeO3 was confirmed using X-ray diffraction analysis. The detailed structural characteristics of the nanocrystalline LaFeO3 powders were studied by the Rietveld refinement using the FullProff program. Field emission scanning electron microscopy (FESEM) and AFM study revealed the formation of spherical morphology of the nanoparticles. TEM images confirm the formation of homogeneously distributed nanoparticles with their average particle size of about 36 nm. The magnetic measurements were carried on the as-prepared powder, both as a function of temperature and magnetic field. Results of field-cooled (FC) and zero-field-cooled (ZFC) magnetic measurements point out to the existence of spin glass (SG) phases. The exchange bias phenomenon at zero fields cooled is found in hysteresis loop measurements at low temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. He, J., Borisevich, A., Kalinin, S.V., Pennycook, S.J., Pantelides, S.T.: Control of octahedral tilts and magnetic properties of perovskite oxide heterostructures by substrate symmetry. Phys. Rev. Lett. 105(22), 227203 (2010)

    Article  ADS  Google Scholar 

  2. Acharya, S., Deb, A., Das, D., Chakrabarti, P.: Enhanced magnetic behavior of Al substituted LaFeO3 (La(1 - x) AlxFeO3, x = 0.10 and 0.30). Mater. Lett. 65(9), 1280–1282 (2011)

    Article  Google Scholar 

  3. O’Keeffe, M., Hyde, B., Bovin, J.-O.: Contribution to the crystal chemistry of orthorhombic perovskites: MgSiO3 and NaMgF3. Phys. Chem. Miner. 4(4), 299–305 (1979)

    Article  ADS  Google Scholar 

  4. Gubin, S.P.: Magnetic nanoparticles. Wiley (2009)

  5. Ahmadvand, H., Salamati, H., Kameli, P., Poddar, A., Acet, M., Zakeri, K.: Exchange bias in LaFeO3 nanoparticles. J. Phys. D. Appl. Phys. 43(24), 245002 (2010)

    Article  ADS  Google Scholar 

  6. Huang, S., Shi, L., Tian, Z., Sun, H., Yuan, S.: Zero-field cooled exchange bias effect in LaxSm1 - xCrO3 (x = 0–0.9) ceramics. J. Magn. Magn. Mater. 394, 77–81 (2015)

    Article  ADS  Google Scholar 

  7. Murthy, J.K., Venimadhav, A.: Giant zero field cooled spontaneous exchange bias effect in phase separated La1.5Sr0.5CoMnO6. Appl. Phys. Lett. 103(25), 252410 (2013)

    Article  ADS  Google Scholar 

  8. Wang, B., Liu, Y., Ren, P., Xia, B., Ruan, K., Yi, J., Ding, J., Li, X., Wang, L.: Large exchange bias after zero-field cooling from an unmagnetized state. Phys. Rev. Lett. 106(7), 077203 (2011)

    Article  ADS  Google Scholar 

  9. Maity, T., Goswami, S., Bhattacharya, D., Roy, S.: Superspin glass mediated giant spontaneous exchange bias in a nanocomposite of BiFeO3-Bi2Fe4O9. Phys. Rev. Lett. 110(10), 107201 (2013)

    Article  ADS  Google Scholar 

  10. Nayak, A.K., Shekhar, C., Winterlik, J., Gupta, A., Felser, C.: Mn2PtIn: a tetragonal Heusler compound with exchange bias behavior. Appl. Phys. Lett. 100(15), 152404 (2012)

    Article  ADS  Google Scholar 

  11. Acharya, S., Mondal, J., Ghosh, S., Roy, S., Chakrabarti, P.: Multiferroic behavior of lanthanum orthoferrite (LaFeO3). Mater. Lett. 64(3), 415–418 (2010)

    Article  Google Scholar 

  12. Singh, R., Patro, P.K., Kulkarni, A., Harendranath, C.: Synthesis of nano-crystalline potassium sodium niobate ceramic using mechanochemical activation. Ceram. Int. 40(7), 10641–10647 (2014)

    Article  Google Scholar 

  13. Kumar, M., Srikanth, S., Ravikumar, B., Alex, T., Das, S.K.: Synthesis of pure and Sr-doped LaGaO3, LaFeO3 and LaCoO3 and Sr, Mg-doped LaGaO3 for ITSOFC application using different wet chemical routes. Mater. Chem. Phys. 113(2), 803–815 (2009)

    Article  Google Scholar 

  14. Feng, J., Liu, T., Xu, Y., Zhao, J., He, Y.: Effects of PVA content on the synthesis of LaFeO3 via sol–gel route. Ceram. Int. 37(4), 1203–1207 (2011)

    Article  Google Scholar 

  15. Qiu, Y., Luo, Y., Zou, Z., Tian, Z., Yuan, S., Xi, Y., Huang, L.: Size effect on magnetic and dielectric properties in nanocrystalline LaFeO3. J. Mater. Sci: Mater. Electron. 25(2), 760–764 (2014)

    Google Scholar 

  16. Ahmed, M., Okasha, N., Hussein, B.: Synthesis, characterization and studies on magnetic and electrical properties of LaAlyFe1-yO3 nanomultiferroic. J. Alloys Compd. 553, 308–315 (2013)

    Article  Google Scholar 

  17. Li, F.-t., Liu, Y., Liu, R.-h., Sun, Z.-m., Zhao, D.-s., Kou, C.-g.: Preparation of Ca-doped LaFeO3 nanopowders in a reverse microemulsion and their visible light photocatalytic activity. Mater. Lett. 64(2), 223–225 (2010)

    Article  Google Scholar 

  18. Qi, X., Zhou, J., Yue, Z., Gui, Z., Li, L.: Auto-combustion synthesis of nanocrystalline LaFeO3. Mater. Chem. Phys. 78(1), 25–29 (2003)

    Article  Google Scholar 

  19. Schmid, I., Kappenberger, P., Hellwig, O., Carey, M., Fullerton, E.E., Hug, H.: The role of uncompensated spins in exchange biasing. EPL (Europhysics Letters) 81(1), 17001 (2008)

    Article  ADS  Google Scholar 

  20. Demirci, E., Öztürk, M., Topkaya, R., Kazan, S., Akdoğan, N., Obaida, M., Westerholt, K.: Thickness and temperature dependence of exchange bias in Co/CoO bilayers. J. Supercond. Nov. Magn. 25(8), 2591–2595 (2012)

    Article  Google Scholar 

  21. Sorescu, M., Xu, T., Hannan, A.: Initial stage growth mechanism of LaFeO3 perovskite through magnetomechanical ball-milling of lanthanum and iron oxides. Am. J. Mater. Sci. 1(1), 57–66 (2011)

    Google Scholar 

  22. Fertout, R.I., Ghelamallah, M., Kacimi, S.: Effect of strontium on structure and superficial area of La2O3. Adv. Mater. Phys. Chem. 2(01), 31 (2012)

    Article  Google Scholar 

  23. Balboul, B.A.: The solid state reaction between lanthanum oxide and strontium carbonate. Thermochim. Acta 445(1), 78–81 (2006)

    Article  Google Scholar 

  24. Sopicka-Lizer, M.: High-energy ball milling: mechanochemical processing of nanopowders. Elsevier (2010)

  25. Rojac, T., Benčan, A., Kosec, M.: Mechanism and role of mechanochemical activation in the synthesis of (K, Na, Li)(Nb, Ta)O3 ceramics. J. Am. Ceram. Soc. 93(6), 1619–1625 (2010)

    Google Scholar 

  26. Jain, P., Srivastava, S.: Investigation of structural, magnetic and electrical properties of pure LaFeO3 synthesized through solution combustion technique. Dig. J. Nanomater. Biostructures 10(1), 141–147 (2015)

    MathSciNet  Google Scholar 

  27. Sen, R., Jain, P., Patidar, R., Srivastava, S., Rana, R., Gupta, N.: Synthesis and characterization of nickel ferrite (NiFe2O4) nanoparticles prepared by sol-gel method. Materials Today: Proceedings 2(4), 3750–3757 (2015)

    Article  Google Scholar 

  28. Patange, S., Shirsath, S.E., Jangam, G., Lohar, K., Jadhav, S.S., Jadhav, K.: Rietveld structure refinement, cation distribution and magnetic properties of Al3 + substituted NiFe2O4 nanoparticles. J. Appl. Phys. 109(5), 053909 (2011)

    Article  ADS  Google Scholar 

  29. Schmid, I.: The role of uncompensated spins in exchange biased systems. University of Basel (2008)

  30. Zhang, H., Liu, W., Wu, P., Hai, X., Guo, M., Xi, X., Gao, J., Wang, X., Guo, F., Xu, X.: Novel behaviors of multiferroic properties in Na-doped BiFeO3 nanoparticles. Nanoscale 6(18), 10831–10838 (2014)

    Article  ADS  Google Scholar 

  31. Pradheesh, R., Harikrishnan, S.N., Sankaranarayanan, V., Sethupathy, K.: Exchange bias and memory effect in Sr2FeCoO6 (2012). arXiv:1209.3720

  32. Mukhopadhyay, K., Mahapatra, A., Chakrabarti, P.: Multiferroic behavior, enhanced magnetization and exchange bias effect of Zn substituted nanocrystalline LaFeO3 (La(1 - x)ZnxFeO3, x = 0.10, and 0.30). J. Magn. Magn. Mater. 329, 133–141 (2013)

    Article  ADS  Google Scholar 

  33. Nadeem, K., Krenn, H., Szabó, D.: Memory effect versus exchange bias for maghemite nanoparticles. J. Magn. Magn. Mater. (2015)

  34. Wang, D., Gong, M.: Surface and shape anisotropy effects in LaFeO3 nanoparticles. J. Appl. Phys. 109(11), 114304 (2011)

    Article  ADS  Google Scholar 

  35. Kodama, R.H., Makhlouf, S.A., Berkowitz, A.E.: Finite size effects in antiferromagnetic NiO nanoparticles. Phys. Rev. Lett. 79(7), 1393 (1997)

    Article  ADS  Google Scholar 

  36. Benitez, M., Petracic, O., Salabas, E., Radu, F., Tüysüz, H., Schüth, F., Zabel, H.: Evidence for core-shell magnetic behavior in antiferromagnetic Co3O4 nanowires. Phys. Rev. Lett. 101(9), 097206 (2008)

    Article  ADS  Google Scholar 

  37. Iglesias, O., Labarta, A., Batlle, X.: Exchange bias phenomenology and models of core/shell nanoparticles. J. Nanosci. Nanotechnol. 8(6), 2761–2780 (2008)

    Google Scholar 

  38. Gheisari, M., Mozafari, M., Niyaifar, M., Amighian, J., Soleimani, R.: Observation of small exchange bias in defect Wüstite (Fe0.93O) nanoparticles. J. Supercond. Nov. Magn. 26(2), 237–242 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

We express our special thanks to SAIF, IIT Bombay, for the DTA/TGA facility and to SICART, Anand (Gujarat), for the TEM studies. The first author, Pranat Jain, wishes to thank the MHRD, India, for providing the financial assistance and Mr. Manoj Prajapati, IISER, Bhopal, for the magnetic measurements. The authors are grateful to Dr. Rajan Singh, IIT Bombay, for his kind support during the XRD analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pranat Jain.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jain, P., Srivastava, S. Structural Investigation and Zero-Field-Cooled Exchange Bias in Nanocrystalline LaFeO3 . J Supercond Nov Magn 29, 2089–2097 (2016). https://doi.org/10.1007/s10948-016-3520-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-016-3520-4

Keywords

Navigation