Skip to main content
Log in

Effect of Magnetic Transition Metal (TM = V, Cr, and Mn) Dopant on Characteristics of Copper Nitride

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Pure and magnetic transition metal (TM = V, Cr, and Mn)-doped copper nitride (Cu3N) films with a preferred orientation of (100) were successfully prepared by reactive rf magnetron sputtering with an appropriate optical band gap for potential application in solar energy conversion. The incorporation of V or Mn can make the lattice constant smaller while it becomes larger after the inset of Cr into Cu3N. The calculated equilibrium structural parameters reveal that the unit cell of Cu3N could expand by inserting TM in the center or Cu vacancy of Cu3N. The SEM shows boundaries disappeared grains of V-doped sample, small spherical-like grains of Cr-doped sample, and greater glomerate crystal particles of Mn-doped Cu3N. The band gap becomes minor (1.50 to 1.22 eV) after doping with V or Cr and larger (1.50 to 1.56 eV) for Mn-doped samples, which realized the adjustable optical band gap of Cu3N films by doping with TM. What is more, TM in the center vacancy of Cu3N can improve magnetic properties more effectively than that of TM in the Cu vacancy of Cu3N. And Cr doping in the center gives the biggest magnetic moment of 0.2656 μ B.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hahn, U., Weber, W.: Electronic structure and chemical-bonding mechanism of Cu3N, Cu3NPd, and related Cu (I) compounds. Phys. Rev. B 53(19), 12684 (1996)

    Article  ADS  Google Scholar 

  2. Ji, A.L., Du, Y., Gao, L., Cao, Z.X.: Crystalline thin films of stoichiometric Cu3N and intercalated Cu3NMx (M = metals): growth and physical properties. Phys. Status Solidi (a) 207(12), 2769–2780 (2010)

    Article  ADS  Google Scholar 

  3. Navío, C., Alvarez, J., Capitan, M.J., Camarero, J., Miranda, R.: Thermal stability of Cu and Fe nitrides and their applications for writing locally spin valves. Appl. Phys. Lett. 94(26), 263112 (2009)

    Article  ADS  Google Scholar 

  4. Asano, M., Umeda, K., Tasaki, A.: Cu3N thin film for a new light recording media. Jpn. J. Appl. Phys. 29(10R), 1985 (1990)

    Article  ADS  Google Scholar 

  5. Chwa, S.O., Kim, K.H.: Adhesion property of copper nitride film to silicon oxide substrate. J. Mater. Sci. Lett. 17(21), 1835–1838 (1998)

    Article  Google Scholar 

  6. Borsa, D.M., Grachev, S., Kerssemakers, J.W.J., Boerma, D.O.: Development of an all-nitride magnetic tunnel junction. J. Magn. Magn. Mater. 240(1), 445–447 (2002)

    Article  ADS  Google Scholar 

  7. Kim, H.D., An, H.M., Lee, E.B., Kim, T.G.: Stable bipolar resistive switching characteristics and resistive switching mechanisms observed in aluminum nitride-based ReRAM devices. IEEE Trans. Electron Devices 58(10), 3566–3573 (2011)

    Article  ADS  Google Scholar 

  8. Lu, Q., Zhang, X., Zhu, W., Zhou, Y., Zhou, Q., Liu, L., Wu, X.: Reproducible resistive-switching behavior in copper-nitride thin film prepared by plasma-immersion ion implantation. Phys. Status Solidi (a) 208(4), 874–877 (2011)

    Article  ADS  Google Scholar 

  9. Zhu, W., Zhang, X., Fu, X., Zhou, Y., Luo, S., Wu, X.: Resistive-switching behavior and mechanism in copper-nitride thin films prepared by DC magnetron sputtering. Phys. Status Solidi (a) 209(10), 1996–2001 (2012)

    Article  ADS  Google Scholar 

  10. Kaur, N., Choudhary, N., Goyal, R.N., Viladkar, S., Matai, I., Gopinath, P., Kaur, D.: Magnetron sputtered Cu3N/NiTiCu shape memory thin film heterostructures for MEMS applications. J. Nano Res. 15(3), 1–16 (2013)

    Article  Google Scholar 

  11. Fang, Y., Persson, J., Zha, C., Willman, J., Miller, C.W., Åkerman, J.: Utility of reactively sputtered CuNx films in spintronics devices. J. Appl. Phys. 111(7), 073912 (2012)

    Article  ADS  Google Scholar 

  12. StróŻecka, A., Li, J., Schürmann, R., Schulze, G., Corso, M., Schulz, F., Pascual, J.I.: Electroluminescence of copper-nitride nanocrystals. Phys. Rev. B 90(19), 195420 (2014)

    Article  ADS  Google Scholar 

  13. Wu, H., Chen, W.: Copper nitride nanocubes: size-controlled synthesis and application as cathode catalyst in alkaline fuel cells. J. Am. Chem. Soc. 133(39), 15236–15239 (2011)

    Article  Google Scholar 

  14. Maruyama, T., Morishita, T.: Copper nitride thin films prepared by radio-frequency reactive sputtering. Journal of Applied Physics 78(6), 4104–4107 (1995)

    Article  ADS  Google Scholar 

  15. Nosaka, T., Yoshitake, M., Okamoto, A., Ogawa, S., Nakayama, Y.: Copper nitride thin films prepared by reactive radio-frequency magnetron sputtering. Thin Solid Films 348(1), 8–13 (1999)

    Article  ADS  Google Scholar 

  16. Matsuzaki, K., Okazaki, T., Lee, Y.S., Hosono, H., Susaki, T.: Controlled bipolar doping in Cu3N (100) thin films. Appl. Phys. Lett. 105(22), 222102 (2014)

    Article  ADS  Google Scholar 

  17. Zakutayev, A., Allen, A.J., Zhang, X., Vidal, J., Cui, Z., Lany, S., Ginley, D.S.: Experimental synthesis and properties of metastable CuNbN2 and theoretical extension to other ternary copper nitrides. Chem. Mater. 26(17), 4970–4977 (2014)

    Article  Google Scholar 

  18. Fan, X., Li, Z., Meng, A., Li, C., Wu, Z., Yan, P.: Improving the thermal stability of Cu3N films by addition of Mn. J. Mater. Sci. Technol. 31(8), 822–827 (2015)

    Article  Google Scholar 

  19. Du, Y., Gao, L., Li, C.R., Ji, A.L.: Thermal stability and electrical properties of copper nitride with In or Ti. Chin. Phys. B 22(6), 066804 (2013)

    Article  ADS  Google Scholar 

  20. Lu, N., Ji, A.L., Cao, Z.X.: Nearly constant electrical resistance over large temperature range in Cu3NMx (M = Cu, Ag, Au) compounds. Scientific reports 3 (2013)

  21. Fan, X.Y., Li, Z.J., Meng, A.L., Li, C., Wu, Z.G., Yan, P.X.: Study on the structure, morphology and properties of Fe-doped Cu3N films. J. Phys. D. Appl. Phys. 47(18), 185304 (2014)

    Article  ADS  Google Scholar 

  22. Moreno-Armenta, M.G., Pérez, W.L., Takeuchi, N.: First-principles calculations of the structural and electronic properties of Cu3MN compounds with M = Ni, Cu, Zn, Pd, Ag, and Cd. Solid State Sci. 9(2), 166–172 (2007)

    Article  ADS  Google Scholar 

  23. Rahmati, A., Ahmadi, K.: Effect of sputtering power on structural, morphological, chemical, optical and electrical properties of Ti:Cu3N nano-crystalline thin films. Eur. Phys. J. Appl. Phys. 60(3), 30302 (2012)

    Article  ADS  Google Scholar 

  24. Cui, X.Y., Soon, A., Phillips, A.E., Zheng, R.K., Liu, Z.W., Delley, B., Stampfl, C.: First principles study of 3d transition metal doped Cu3N. J. Magn. Magn. Mater. 324(19), 3138–3143 (2012)

    Article  ADS  Google Scholar 

  25. Kresse, G., Furthmüller, J.: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54(16), 11169 (1996)

    Article  ADS  Google Scholar 

  26. Tauc, J., Grigorovici, R., Vancu, A.: Optical properties and electronic structure of amorphous germanium. Phys. Status Solidi (b) 15(2), 627–637 (1966)

    Article  ADS  Google Scholar 

  27. Balamurugan, B., Maruyama, T.: Inhomogeneous effect of particle size on core-level and valence-band electrons: size-dependent electronic structure of Cu3N nanoparticles. Appl. Phys. Lett. 89(3), 033112 (2006)

    Article  ADS  Google Scholar 

  28. Zakutayev, A., Caskey, C.M., Fioretti, A.N., Ginley, D.S., Vidal, J., Stevanovic, V., Lany, S.: Defect tolerant semiconductors for solar energy conversion. J. Phys. Chem. Lett. 5(7), 1117–1125 (2014)

    Article  Google Scholar 

  29. Hadian, F., Rahmati, A., Movla, H., Khaksar, M.: Reactive DC magnetron sputter deposited copper nitride nano-crystalline thin films: Growth and characterization. Vacuum 86(8), 1067–1072 (2012)

    Article  ADS  Google Scholar 

  30. Chen, H., Zhao, J., Wu, Z., Yang, T., Ma, Y., Huang, W., Yao, K.: First principles study on the influence of electronic configuration of M on Cu3NM:M = Sc, Ti, V, Cr, Mn, Fe, Co, Ni. Comput. Theor. Chem. 1027, 33–38 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge the financial support from the National Basic Research Program of China (2012CB933301), the Ministry of Education of China (No. IRT1148), the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions, and the National Natural Science Foundation of China (51172110, 51372119 and 61377019) and Synergetic Innovation Center for Organic Electronics and Information Displays.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianping Yang or Xing’ao Li.

Additional information

Yanghua Zhao and Qiaoxia Zhang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Zhang, Q., Huang, S. et al. Effect of Magnetic Transition Metal (TM = V, Cr, and Mn) Dopant on Characteristics of Copper Nitride. J Supercond Nov Magn 29, 2351–2357 (2016). https://doi.org/10.1007/s10948-016-3511-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-016-3511-5

Keywords

Navigation