Skip to main content
Log in

Structural and Static Magnetic Behavior of Antiferromagnetic Compounds La0.67Sr0.33−x Ca x Mn0.75Fe0.25 O 3 (x = 0.00 and 0.17)

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

We investigated the structural and magnetic properties of polycrystalline La0.67Sr0.33−x Ca x Mn0.75Fe0.25 O 3 (x = 0.00 and 0.17) samples. Rietveld refinement of X-ray powder diffraction (XRD) patterns shows that the samples adopt a rhombohedral structure with the \(R\overline {3}c\) space group. The average particle size of each sample was estimated from the most intense peak (104) of XRD pattern using Debye–Scherrer’s formula. The average sizes are 73 and 82 nm. Static magnetic measurements, viz., hysteresis loops, field-cooled and zero field-cooled magnetization versus temperature curves of some samples carried out by BS1 and BS2 magnetometers in the temperature range of 400 to 5 K, clearly indicate the presence of a superparamagnetic (SPM) relaxation in the samples. Samples with x = 0.00 and x = 0.17 show an antiferromagnetic–paramagnetic (AFM–PM) transition at Neel temperature (T N) and a charge ordering transition, characterized by an extra peak (or shoulder) at T CO. The magnetocrystalline anisotropy, average particle size, and its distribution were calculated from the analysis of the static magnetic data. The results are in good agreement with those obtained from XRD observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Jin, S., Tiefel, T.H., Mc Cormack, M., Fastnacht, R.A., Ramesh, R., Chen, L.H.: Thousandfold change in resistivity in magnetoresistive La-Ca-Mn-O films. Science 264, 413–415 (1994)

    Article  ADS  Google Scholar 

  2. Goodenough, J.B.: Theory of the role of covalence in the perovskite-type manganites [La, M(II)]MnO3. Phys. Rev. 100, 564–573 (1955)

    Article  ADS  Google Scholar 

  3. Radaelli, P.G., Cox, D.E., Marezio, M., Cheong, S.-W.: Charge, orbital, and magnetic ordering in La0.5Ca0.5MnO3. Phys. Rev. B 55, 3015–3023 (1997)

    Article  ADS  Google Scholar 

  4. Tokura, Y., Tomioka, Y.: Colossal magnetoresistive manganites. J. Magn. Magn. Mater. 200, 1–23 (1999)

    Article  ADS  Google Scholar 

  5. Bao, W., Axe, J.D., Chen, C.H., Cheong, S-W.: Impact of charge ordering on magnetic correlations in perovskite (Bi, Ca) Mn O3. Phys. Rev. Lett. 78, 543–546 (1997)

    Article  ADS  Google Scholar 

  6. Millange, F., de Brion, S., Chouteau, G.: Charge, orbital, and magnetic order in Nd0.5Ca0.5MnO3. Phys. Rev. B 62, 5619–5626 (2000)

    Article  ADS  Google Scholar 

  7. Brink, J.V.D., Khaliullin, G., Khomskii, D.: Charge and orbital order in half-doped manganites. Phys. Rev. Lett. 83, 5118–5121 (1999)

    Article  ADS  Google Scholar 

  8. Vogt, T., Cheetham, A.K., Mahendiran, R., Raychaudhuri, A.K., Mahesh, R., Rao, C.N.R.: Structural changes and related effects due to charge ordering in Nd0.5Ca0.5MnO3. Phys. Rev. B 54, 15303–15306 (1996)

    Article  ADS  Google Scholar 

  9. Ding, J.F., Lebedev, O.I., Turner, S., Tian, Y.F., Hu, W.J., Seo, J.W., Panagopoulos, C., Prellier, W., Van Tendeloo, G., Wu, T.: Interfacial spin glass state and exchange bias in manganite bilayers with competing magnetic orders. Phys. Rev. B 87, 054428 1–054428 7 (2013)

    ADS  Google Scholar 

  10. Karmakar, S., Chaudhuri, B.K., Chan, C.L., Yang, H.D.: Origin of low temperature memory and aging effects in spin glass like La0.7Ca0.3MnO3 nanomanganite. J. Appl. Phys. 108, 113916 1–113916 8 (2010)

    Article  Google Scholar 

  11. Lynn, J.W., Erwin, R.W., Borchers, J.A., Huang, Q., Santoro, A., Peng, J.L., Li, Z.Y.: Unconventional ferromagnetic transition in La1−xCaxMnO3. Phys. Rev. Lett. 76, 4046–4049 (1996)

    Article  ADS  Google Scholar 

  12. Fäth, M., Freisem, S., Menovsky, A.A., Tomioka, Y., Aarts, J., Mydosh, J.A.: Spatially inhomogeneous metal-insulator transition in doped manganites. Science 285, 1540–1542 (1999)

    Article  Google Scholar 

  13. Rietveld, H.M.: A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 2, 65–71 (1969)

    Article  Google Scholar 

  14. Zemni, S., Gasmi, A., Boudard, M., Oumezzine, M.: Effect of nominal strontium deficiency on the structure and the magnetic properties of La0.6Sr0.4−δ MnO3 manganese perovskites. J. Mat. Sci. Eng. B144, 117–122 (2007)

    Article  Google Scholar 

  15. Goldschmidt, V.M.: Geochemistry, p 730. Oxford University Press (1958)

  16. Li, Z.Q., Jiang, E.Y., Ren, S.W., Hou, D.L., Wu, P., Bai, H.L.: Magneto-transport properties and electronic structure of La0.85Na0.15MnO3. Phys. Stat. Sol. (a) 195, 429–433 (2003)

    Article  ADS  Google Scholar 

  17. Williamson, G.K., Hall, W.H.: X-ray line broadening from filed aluminium and wolfram. Acta Metall. 1, 22–31 (1953)

    Article  Google Scholar 

  18. Mohamed, Z., Tka, E., Dhahri, J., Hlil, E.K.: Giant magnetic entropy change in manganese perovskite La0.67Sr0.16Ca0.17MnO3 near room temperature. J. Alloys Compd. 615, 290– 297 (2014)

    Article  Google Scholar 

  19. Prasad, K., Chandra, K.P., Bhagat, S., Choudhary, S.N., Kulkarni, A.R.: Structural and electrical properties of lead-free perovskite Ba(Al1/2Nb1/2)O3. J. Am. Ceram. Soc. 93, 190– 196 (2010)

    Article  Google Scholar 

  20. Bhagat, S., Prasad, K.: Structural and impedance spectroscopy analysis of Ba(Fe1/2Nb1/2)O3 ceramic. Phys. Stat. Sol. (a) 207, 1232–1239 (2010)

    Article  ADS  Google Scholar 

  21. Vanitha, P.V., Santhosh, P.N., Singh, R.S., Rao, C.N.R., Attfield, J.P.: Effect of the cation size disorder on charge ordering in rare-earth manganates. Phys. Rev. B 59, 13539–13541 (1999)

    Article  ADS  Google Scholar 

  22. Vanitha, P.V., Rao, C.N.R.: An investigation of the re-entrant ferromagnetic transition in rare earth manganates in the regime of competing charge-ordering and ferromagnetic interactions. J. Phys.: Condens. Matter. 13, 11707–11715 (2001)

    ADS  Google Scholar 

  23. Chang, Y.L., Huang, Q., Ong, C.K.: Effect of Fe doping on the magnetotransport properties in Nd0.67Sr0.33MnO3 manganese oxides. J. Appl. Phys. 91, 789–793 (2002)

    Article  ADS  Google Scholar 

  24. Ahn, K.H., Wu, X.W., Liu, K., Chien, C.L.: Effects of Fe doping in the colossal magnetoresistive La1−xCaxMnO3. J. Appl. Phys. 81, 5505–5507 (1997)

    Article  ADS  Google Scholar 

  25. Blanco, J.J., Insausti, M., Gil de Muro, I., Lezama, L., Rojo, T.: Neutron diffraction and magnetic study of the Nd0.7Pb0.3Mn1−xFexO3 (0≤x≤0.1) perovskites. J. Solid State Chem. 179, 623–631 (2006)

    Article  ADS  Google Scholar 

  26. Laiho, R., Lisunov, K.G., Lähderanta, E., Salminen, J., Zakhvalinskii, V.S.: Low-field magnetic properties as indication of disorder, frustration and cluster formation effects in La1−xCaxMn1−yFeyO3. J. Magn. Magn. Mater. 250, 267–274 (2002)

    Article  ADS  Google Scholar 

  27. Zener, C.: Interaction between the d-shells in the transition metals. II. Ferromagnetic compounds of manganese with perovskite structure. Phys. Rev. 82, 403–405 (1951)

    Article  ADS  Google Scholar 

  28. Radaelli, P.G., Iannone, G., Marezio, M., Hwang, H.Y., Cheong, S.W., Jorgensen, J.D., Argyriou, D.N.: Structural effects on the magnetic and transport properties of perovskite \(\mathrm {A}_{\mathrm {1-x}}\mathrm {A}^{\prime }_{\mathrm {x}}\text {MnO}_{3}\) (x = 0.25, 0.30). Phys. Rev. B 56, 8265–8276 (1997)

    Article  ADS  Google Scholar 

  29. Issaoui, F., Tlili, M.T., Bejar, M., Dhahri, E., Hlil, E.K.: Structural and magnetic studies of Ca2−x Sm x MnO compounds (x = 0–0.4). J. Supercond. Novel Magn. 25, 1169–1175 (2012)

    Article  Google Scholar 

  30. Chalasani, R., Vasudevan, S.: Form, content, and magnetism in iron oxide nanocrystals. J. Phys. Chem. C 115, 18088–18093 (2011)

    Article  Google Scholar 

  31. Ningthoujam, R.S., Gajbhiye, N.S.: Magnetization studies on ε- Fe2.4Co0.6N nanoparticles. Mater. Res. Bull. 45, 499–504 (2010)

    Article  Google Scholar 

  32. Sarkar, T., Mukhopadhyay, P.K., Raychaudhuri, A.K., Banerjee, S.: Structural, magnetic, and transport properties of nanoparticles of the manganite Pr0.5Ca0.5MnO3. J. Appl. Phys. 101, 124307 1–124307 7 (2007)

    Google Scholar 

  33. Modak, S., Karan, S., Roy, S.K., Chakrabarti, P.K.: Static and dynamic magnetic behavior of nanocrystalline and nanocomposites of (Mn0.6Zn0.4Fe2O4)(1−z)(SiO2)z (z = 0.0, 0.10, 0.15, 0.25). J. Appl. Phys. 108, 093912 1–093912 9 (2010)

    Article  Google Scholar 

  34. Respaud, M., Broto, J.M., Rakoto, H., Fert, A.R., Thomas, L., Barbara, B., Verelst, M., Snoeck, E., Lecante, P., Mosset, A., Osuna, J., Ely, T.O., Amiens, C., Chaudret, B.: Surface effects on the magnetic properties of ultrafine cobalt particles. Phys. Rev. B 57, 2925–2935 (1998)

    Article  ADS  Google Scholar 

  35. Wohlfarth, E.P.: The temperature dependence of the magnetic susceptibility of spin glasses. Phys. Lett. A 70, 489–491 (1979)

    Article  ADS  Google Scholar 

  36. Vaishnava, P.P., Senaratne, U., Buc, E.C., Naik, R., Naik, V.M., Tsoi, G.M., Wenger, L.E.: Magnetic properties of γ- Fe2O3 nanoparticles incorporated in a polystyrene resin matrix. Phys. Rev. B 76, 024413 1–024413 10 (2007)

    Article  ADS  Google Scholar 

  37. Chikazumi, S.: Physics of Magnetism, p 140. Krieger, Malabar FL (1964)

    Google Scholar 

Download references

Acknowledgments

This work is supported by the Tunisian National Ministry of Higher Education and Scientific Research and the French Ministry of Higher Education and Research collaboration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Za. Mohamed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohamed, Z., Abassi, M., Tka, E. et al. Structural and Static Magnetic Behavior of Antiferromagnetic Compounds La0.67Sr0.33−x Ca x Mn0.75Fe0.25 O 3 (x = 0.00 and 0.17). J Supercond Nov Magn 29, 2109–2117 (2016). https://doi.org/10.1007/s10948-016-3466-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-016-3466-6

Keywords

Navigation