Skip to main content
Log in

Significant Correlations Between Levitation-Suspension Forces and Critical Current Densities in Bulk YBCO/Ag Composite Superconductors Fabricated by Infiltration and Growth Processing Technique

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

We report on significant correlations between the levitation-suspension forces and critical current densities in bulk YBCO/Ag composite superconductors fabricated by infiltration and growth processing (IGP) technique. Based on our studies, we have found that there is a strong correlation between various parameters obtained from levitation and suspension force curves and the magnetic J cs calculated from M-H loops using the standard Bean’s model-type approaches. Significantly, the levitation force gap and the critical current density of the bulk sample are in direct correlation. We also find that it is possible to qualitatively predict the J cs of samples from the levitation and suspension force curves by using this cost-effective measurement technique as a preliminary tool. These correlations provide a novel approach to rapid selection and characterization of bulk superconducting samples for their employment in practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Moon, F.C.: Superconducting Levitation: Applications to Bearing & Magnetic Transportation. Wiley (1994)

  2. Brandt, E.H.: Science 243, 349–355 (1989)

    Article  ADS  Google Scholar 

  3. Qin, M.J., Li, G., Liu, H.K., Dou, S.X., Brandt, E.H.: Phys. Rev. B 66, 024516 (2002)

    Article  ADS  Google Scholar 

  4. Brandt, E.H.: Appl. Phys. Lett. 53, 1554 (1988)

    Article  ADS  Google Scholar 

  5. Becker, M., Koblischka, M.R., Hartmann, U.: Phys. Edn. 45(1), 42 (2010)

    Article  Google Scholar 

  6. Hellman, F., Gyorgy, E.M., Johnson, D.W., O’ Bryan, H.M., Sherwood, R.C.: J. App. Phys. 63(2), 447 (1988)

    Article  ADS  Google Scholar 

  7. Valle, N.D., Sanchez, A., Pardo, E., Navau, C., Chen, D.-X.: App. Phys. Lett. 91, 112507 (2007)

    Article  ADS  Google Scholar 

  8. Schultz, L., de Haas, O., Verges, P., Beyer, C., Röhlig, S., Olsen, H., Kühn, L., Berger, D., Noteboom, U., Funk, U.: IEEE Trans. Appl. Superconduct. 15(2), 2301–2305 (2005)

    Article  Google Scholar 

  9. Sanchez, A., Navau, C.: Phys. Rev. B 64, 214506 (2001)

    Article  ADS  Google Scholar 

  10. Sanchez, A., Navau, C.: Phys. Rev. B 64, 214507 (2001)

    Article  ADS  Google Scholar 

  11. Yang, W., Qiu, M., Liu, Y., Wen, Z., Duan, Y., Chen, X.: Supercond. Sci. Technol. 20, 281 (2007)

    Article  ADS  Google Scholar 

  12. Sanchez, A., Navau, C.: Physica C 268(1-2), 46–52 (1996)

    Article  ADS  Google Scholar 

  13. Hull, J.R.: Supercond. Sci. Technol. 13, R1 (2000)

    Article  ADS  Google Scholar 

  14. Jeong, K., Kim, D.Y., Park, Y.K., Lee, K.W., Park, J.C.: Phys. C 185–189, 2393–2394 (1991)

  15. Reddy, E.S., Rajasekharan, T.: Supercond. Sci. Technol. 11, 523 (1998)

    Article  ADS  Google Scholar 

  16. Iida, K., Babu, N.H., Shi, Y., Cardwell, D.A.: Supercond. Sci. Technol. 18, 1421 (2005)

    Article  ADS  Google Scholar 

  17. Diko, P., Antal, V., Kaňuchová, M., Jirsa, M., Jurek, K.: Physica C 470, 155–158 (2010)

    Article  ADS  Google Scholar 

  18. Babu, N.H., Shi, Y.-H., Dennis, A.R., Pathak, S.K., Cardwell, D.A.: IEEE Trans. Appl. Superconduct. 21(3), 2698–2701 (2011)

    Article  ADS  Google Scholar 

  19. Li, G.-Z., Yang, W.-M., Cheng, X.-F., Fan, J., Guo, X.-D.: vol. 44 (2009)

  20. Cloots, R., Koutzarova, T., Mathieu, J.–P., Ausloos, M.: Supercond. Sci. Technol. 18, R9–R23 (2005)

    Article  ADS  Google Scholar 

  21. Mathieu, J.-P., Koutzarova, T., Rulmont, A., Fagnard, J.-F., Laurent, Ph., Mattivi, B., Vanderbemden, Ph., Ausloos, M., Cloots, R.: Supercond.Sci. Technol. 18, S136 (2005)

    Article  ADS  Google Scholar 

  22. Kumar, N.D., Rajasekharan, T., Seshubai, V.: Supercond. Sci. Technol. 24, 085005 (2011)

    Article  ADS  Google Scholar 

  23. Fang, H., Ravi-chandar, K.: Physica C 340, 261–268 (2000)

    Article  ADS  Google Scholar 

  24. Zhao, Y., Cheng, C. H., Wang, J.S.: Supercond. Sci. Technol. 18, S43 (2005)

    Article  ADS  Google Scholar 

  25. Diko, P., Antal, V., Kaňuchová, M., Šefčiková, M., Kováč, J.: J. Phys.: Conf. Ser 153, 012009 (2009)

    ADS  Google Scholar 

  26. Moon, F.C., Yanoviak, M.M., Ware, R.: Appl. Phys. Lett. 52(18), 1534 (1988)

    Article  ADS  Google Scholar 

  27. Zhang, X.-Y., Zhou, J., Zhou, Y.-H., Liang, X.-W.: Supercond. Sci. Technol. 22, 025006 (2009)

    Article  ADS  Google Scholar 

  28. Lu, Y., Qin, Y., Dang, Q., Wang, J.: Physica C 470(22), 1994–1997 (2010)

    Article  ADS  Google Scholar 

  29. Zhou, Y.-H., Zhang, X.-Y., Zhou, J.: J. Appl. Phys. 103, 123901 (2008)

    Article  ADS  Google Scholar 

  30. Brandt, E.H.: Amer. J. Phys. 58, 43 (1990)

    Article  ADS  Google Scholar 

  31. Lugo, J., Sosa, V.: Physica C 324, 9–14 (1999)

    Article  ADS  Google Scholar 

  32. Lugo, J., Sosa, V.: Physica C 324, 9–14 (1999)

    Article  ADS  Google Scholar 

  33. Deutscher, G., Muller, K.A.: Phys. Rev. Lett. 59(15), 1745 (1987)

    Article  ADS  Google Scholar 

  34. Gou, X.-F., Zhang, Z.-X.: Phys. C 470, 461–464 (2010)

    Article  ADS  Google Scholar 

  35. Zablotskii, V, Jirsa, M, Petrenko, P: Supercond. Sci. Technol. 18, 200–205 (2005)

    Article  ADS  Google Scholar 

  36. Fruchter, L., Malozemoff, A.P., Campbell, I.A., Sanchez, J., Konczykowski, M., Griessen, R., Holtzberg, F.: Phys. Rev. B 43(10), 8709–8712 (1991)

    Article  ADS  Google Scholar 

  37. Kalisky, B., Gitterman, M., Shapiro, B.Ya., Shapiro, I., Shaulov, A., Tamegai, T., Yeshurun, Y.: Phys. Rev. Lett. 98, 017001 (2007)

    Article  ADS  Google Scholar 

  38. Yeshurun, Y., Malozemoff, A.P., Shaulov, A.: Rev. Mod. Phys. 68(3), 911–949 (1996)

    Article  ADS  Google Scholar 

  39. Smolyak, B.M., Ermakov, G.V.: Tech. Phys. Lett. 36, 461 (2010)

    Article  ADS  Google Scholar 

  40. Monarkha, V.Y., Timofeev, V.P., Shablo, A.A.: Low Temp. Phys. 38(1), 31–34 (2012)

    Article  ADS  Google Scholar 

  41. Parthasarathy, R., Lakshmi, M.M., Seshubai, V.: Physica C 471(13-14), 395–399 (2011)

    Article  ADS  Google Scholar 

  42. Murakami, M., Oyama, T., Fujimoto, H., Taguchi, T., Gotoh, S., Shiohara, Y., Koshiuzuka, N., Tanaka, S: Adv. Supercond. III, 753–756 (1991)

  43. Ram, K., Shyamalendu, B., Pan, V., Durusoy, Z.: Physics and Materials Science of Vortex States, Flux Pinning and Dynamics, pp. 356. NATO Science Series (1998)

  44. Shoer, J.P., Peck, M.A.: AIAA Guidance, Navigation and Control Conference and Exhibit AIAA, pp. 2007–6352 (2007)

  45. Cardwell, D.A., Ginley, D.S.: Handbook of Superconducting Materials, vol. 1. Inst. of Phys. Publishing, UK (2003)

  46. Tsuchimoto, M.: Phys. Proc 58, 338–341 (2014)

    Article  ADS  Google Scholar 

  47. Kordyuk, A.A., Nemoshkalenko, V.V., Viznichenko, R.V., Gawalek, W., Habisreuther, T.: Appl. Phys. Lett. 75(11), 1595–1597 (1999)

    Article  ADS  Google Scholar 

  48. Krabbes, G., Fuchs, G., Canders, W-R., May, H, Palka, R: High Temperature Superconductor Bulk Materials. Wiley, Germany (2006)

    Book  Google Scholar 

  49. Wang, J.J., He, C.Y., Meng, L.F., Li, C., Han, R.S., Gao, Z.X.: Supercond. Sci. Technol. 16, 527–533 (2003)

    Article  ADS  Google Scholar 

  50. Lu, Y., Lu, B., Ge, Y., Chen, W.: Int. J. Mod. Phys. B 25(19), 2525 (2011)

    Article  ADS  Google Scholar 

  51. Pokrovskiy, S, Mineev, N, Sotnikova, A, Ermolaev, Y, Rudnev, I: J. Phys. Conf. Series 507, 02202 (2014)

    Article  Google Scholar 

  52. Ozturk, K., Akbulut, S., Kutuk, S., Bolat, S., Celik, S., Basoglu, M.: J. All. Comp 516, 167–171 (2012)

    Article  Google Scholar 

  53. Parthasarathy, R., Lakshmi, M.M., Seshubai, V.: AIP Conf. Proc. 1447, 899 (2012)

    Article  ADS  Google Scholar 

  54. Bean, C.P.: Phys. Rev. Lett. 8, 250 (1962)

    Article  ADS  Google Scholar 

  55. Bean, C.P.: Rev. Mod. Phys. 36, 31 (1962)

    Article  ADS  Google Scholar 

  56. Kim, Y.B., Hempstead, C.F., Strnad, A. R.: Phys. Rev. 129, 528 (1963)

    Article  ADS  Google Scholar 

  57. Campbell, A.M., Evetts, J.E.: Critical Currents in Superconductors. Taylor and Francis (1972)

Download references

Acknowledgments

RP would like to thank CSIR-India for the Senior Research Fellowship. Both the authors thank Department of Science and Technology-Center for Nanotechnology (DST-CFN) for funding the QD-PPMS facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parthasarathy R.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

R, P., V, S. Significant Correlations Between Levitation-Suspension Forces and Critical Current Densities in Bulk YBCO/Ag Composite Superconductors Fabricated by Infiltration and Growth Processing Technique. J Supercond Nov Magn 29, 1439–1447 (2016). https://doi.org/10.1007/s10948-016-3431-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-016-3431-4

Keywords

Navigation