Structural, Magnetic, and Optoelectronic Properties of TbNi5, TbNi3Ti2 and TbNi3V2 Compounds

  • Mohammed El Amine MonirEmail author
  • H. Baltache
  • R. Khenata
  • G. MurtazaEmail author
  • Asif Mahmood
Original Paper


The spin-polarized, electronic, magnetic, and optical properties of TbNi5, TbNi3Ti2, and TbNi3V2 intermetallic compounds have been calculated by employing the full-potential linear augmented plane waves (FP-LAPW) within the density functional theory (DFT) and implemented in the WIEN2k package. In this approach, the generalized gradient approximation with Hubbard U-correction (GGA + U) was chosen as exchange-correlation potential. The electronic structure such as band structure and density of states have been investigated and compared among them. The frequency dependences of dielectric function, optical absorption, reflectivity, and optical conductivity are determined. The optical spectra are changed due to the substitution of nickel with titanium and vanadium. Total and local magnetic moments of Tb, Ni, Ti, and V are also estimated; it is shown that the total magnetic moment of the three alloys is vigorously contributed by the local magnetic moment of terbium.


Intermetallic Electronic structure Optical properties Magnetic moment GGA + U 



The author Asif Mahmood extends his sincere appreciation to the Deanship of Scientific Research at King Saud University funding this Prolific Research Group (PRG-1436-26).


  1. 1.
    Gubbens, P.C.M., Van der Kraan, A.M., Buschow, K.H.J.: Magnetic properties of rare earth-transition metal compounds. Hyperfine Interact. 53, 37–58 (1990)ADSCrossRefGoogle Scholar
  2. 2.
    Trémolet de Lacheisserie, E., Gignoux, D., Schlenker, M.: Magnetism: Materials and Applications. Springer, Berlin (2005)CrossRefGoogle Scholar
  3. 3.
    Gschneidner, K.A., Pecharsky, V.K., Tsokol, A.O.: Rep. Progr. Phys. 68, 1479 (2005)ADSCrossRefGoogle Scholar
  4. 4.
    Mushnikov, N.V.: Phys. Uspekhi 55, 421 (2012)ADSCrossRefGoogle Scholar
  5. 5.
    Coey, J.M.D.: Magn. IEEE Trans. 47, 4671 (2011)ADSCrossRefGoogle Scholar
  6. 6.
    Senoh, H., Takeichi, N., Takeshita, H.T., Tanaka, H., Kiyobayashi, T., Kuriyama, N.: Hydrogenation properties of RNi5 (R: rare earth) intermetallic compounds with multi pressure plateaux. Mater. Trans. 44, 1663–1666 (2003)CrossRefGoogle Scholar
  7. 7.
    Ranke, P.J., Mota, M.A., Grangeia, D.F., Magnus, A., Carvalho, G., Gandra, F.C.G., Coelho, A.A., Caldas, A., Oliveira, N.A., Gama, S.: Magnetocaloric effect in the RNi5 (R = Pr, Nd, Gd, Tb, Dy, Ho, Er) series. Phys. Rev. B: Condens. Matter Mater. Phys. 70, 134428 (2004)ADSCrossRefGoogle Scholar
  8. 8.
    Franse, J.J.M., Radvansky, R.J.: In: Buschow, K. H. J. (ed.) Handbook of Magnetic Materials, vol. 7, p 307. North-Holland, Amsterdam (1993)Google Scholar
  9. 9.
    Kuchin, A.G., Ermolenko, A.S., Khrabrov, V.I., Kourov, N.I., Makarova, G.M., Belozerov, Ye. V., Lapina, T.P., Kulikov, Yu. A.: J. Magn. Magn. Mater. 238, 29 (2002)ADSCrossRefGoogle Scholar
  10. 10.
    Burzo, E.: Rom. Rep. Phys. 59, 337 (2007)Google Scholar
  11. 11.
    Burzo, E., Takács, A., Neumann, M., Chioncel, L.: Phys. Status Solidi C 1, 3343 (2004)ADSCrossRefGoogle Scholar
  12. 12.
    Blazina, Z., Šorgi, B., Drašner, A.: J. Phys.: Condens. Matter 9, 3099 (1997)ADSGoogle Scholar
  13. 13.
    Algarabel, P.A., Morellón, L., Ibarra, M.R., Schmitt, D., Gignoux, D., Tare, A.: Magnetocrystalline anisotropy in RNi5 intermetallics. J. Appl. Phys. 73, 6054–6056 (1993)ADSCrossRefGoogle Scholar
  14. 14.
    Gignoux, D., NaitSaada, A., de la Bathie, R.P.: Magnetic properties of TbNi and HoNi single crystals. J. Phys. Colloq. 40(C5), 188–190 (1979)CrossRefGoogle Scholar
  15. 15.
    Grechnev, G.E., Desnenko, V.A., Panfilov, A.S., Svechkarev, I.V., Brommer, P.E., Franse, J.J.M., Kayzel, F.E.: Pressure effect on electronic structure and magnetic properties of RNi5. Phys. B 237–238, 532–533 (1997)CrossRefGoogle Scholar
  16. 16.
    Svoboda, P., Vejpravova, J., KimNgan, N.T.H., Kaysel, F.J.: Specific heat study of selected RNi5. J. Magn. Magn. Mater. 272–276, 595–596 (2004)CrossRefGoogle Scholar
  17. 17.
    Galera, R.M., Rogalev, A.: Hard X-ray magnetic circular dichroism in GdNi5 and TbNi5 single crystals. J. Appl. Phys. 85, 4889–4891 (1999)ADSCrossRefGoogle Scholar
  18. 18.
    de Reotier Dalmas, P., Yaouanc, A., Gubbens, P.C.M., Gignoux, D., Gorges, B., Schmitt, D., Hartmann, O., Wäpping, R., Weidinger, A.: Effect of Tb3+ crystal field on the positive muon precession frequency in TbNi5. J. Magn. Magn. Mater. 104–107, 1267–1268 (1992)CrossRefGoogle Scholar
  19. 19.
    Carboni, C., Gignoux, D., Li, Y., Ross, J.W., Tary, A.: The field dependence of the hyperfine splitting of terbium in TbNi5. J. Phys.: Condens. Matter 8, 1763–1774 (1996)ADSGoogle Scholar
  20. 20.
    Goremychkin, E.A., Mühle, E., Ivanitski, P.G., Krotenko, V.T., Pasechkin, M.V., Slisenko, V.V., Vasilkevich, A.A., Lippold, B., Chistyakov, O.D., Savitski, E.M.: Crystal electric field splitting in TbNi5 and ErNi5 studied by inelastic neutron scattering. Phys. Status Solidi B 121, 623–631 (1984)ADSCrossRefGoogle Scholar
  21. 21.
    Gignoux, D., Rhyne, J.J.: Spin excitations in TbNi5 by inelastic neutron scattering. J. Magn. Magn. Mater. 54–57, 1179–1180 (1986)CrossRefGoogle Scholar
  22. 22.
    Lemaire, R., Paccard, D.: Structure magnétique du composé intermétallique TbNi5. C. R. Acad. Sci. B (Paris) 270, 1131–1133 (1970)Google Scholar
  23. 23.
    Haldar, A., Dhiman, I., Das, A., Suresh, K.G., Nigam, A.K.: J. Alloys Comp. 509, 3760 (2011)CrossRefGoogle Scholar
  24. 24.
    Blaha, P., Schwarz, K., Sorantin, P., Trickey, S.K.: Comput. Phys. Commun. 59, 339 (1990)CrossRefGoogle Scholar
  25. 25.
    Hohenberg, P., Kohn, W.: Phys. Rev. 136, B864 (1964)ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    Novak, P., Kunes, J., Chaput, L., Pickett, W.E.: Phys. Status Solidi B 243, 563 (2006)ADSCrossRefGoogle Scholar
  27. 27.
    Anisimov, V.I., Solovyev, I.V., Korotin, M.A., Czyzyk, M.T., Sawatzky, G.A.: Phys. Rev. B 48, 16929 (1993)ADSCrossRefGoogle Scholar
  28. 28.
    Petukhov, A.G.: Phys. Rev. B 67, 153106 (2003)ADSCrossRefGoogle Scholar
  29. 29.
    Murnaghan, F.D.: Proc. Natl. Acad. Sci. USA 30, 5390 (1944)Google Scholar
  30. 30.
    Shang, S.L., Wang, Y., Kim, D., Liu, Z.-K.: Mater. Comput. Sci. 47, 1040 (2010)Google Scholar
  31. 31.
    Knyazev, Yu. V., Lukoyanov, A.V., Kuz’min, Yu. I., Kuchin, A.G.: Phys. Solid State 55, 2 (2013)Google Scholar
  32. 32.
    Knyazev, Yu. V., Lukoyanov, A.V., Kuz’min, Yu. I., Haldar, A., Suresh, K.G.: Opt. Spectrosc. 117, 3 (2014)CrossRefGoogle Scholar
  33. 33.
    Knyazev, Yu. V., Kuz’min, Yu. I., Kuchin, A.G., Lukoyanov, A.V., Nekrasov, I.A.: Opt. Spectrosc. 104, 3 (2008)CrossRefGoogle Scholar
  34. 34.
    Mahan, G.D.: Many Particle Physics. Plenum Press, New York (1990)CrossRefGoogle Scholar
  35. 35.
    Dressel, M., Gruner, G.: Electrodynamics of Solids. Cambridge University Press, Cambridge (2002)CrossRefGoogle Scholar
  36. 36.
    Goraus, J., Malankiewicz, P.: Acta Phys. Polon. 121, 1077 (2012)Google Scholar
  37. 37.
    Buschow, K.H.J.: Rep. Prog. Phys. 40, 1179 (1977)ADSCrossRefGoogle Scholar
  38. 38.
    Haldara, A., Dhimanb, I., Dasb, A., Suresha, K.G., Nigamc, A.K.: J. Alloys Compd. 509, 3760–3765 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Laboratoire de Physique Quantique, de la Matière et de la Modélisation Mathématique (LPQ3M)Université de MascaraMascaraAlgeria
  2. 2.Department of PhysicsIslamia College PeshawarPeshawarPakistan
  3. 3.College of Engineering, Chemical Engineering DepartmentKing Saud UniversityRiyadhSaudi Arabia

Personalised recommendations