Journal of Superconductivity and Novel Magnetism

, Volume 29, Issue 4, pp 1013–1017 | Cite as

First-Principle Calculations of Magnetic Properties of Hexagonal BaTi0.95TM0.05O3−δ; TM = [Fe, Cr, Co]

Original Paper
  • 84 Downloads

Abstract

We have studied the magnetism in the hexagonal polymorph of BaTiO3 doped with one of the transition metals (TM = Co, Fe, Cr) and in the presence of oxygen vacancies. The formation energies for BaTi0.95TM0.05O3−δ; (TM = Co, Fe, Cr) are 8.10, 8.80, and 12.36 eV, respectively. The antiferromagnetic (AFM) phase of BaTiO3 has changed to a ferromagnetic phase because of doping. For each case of doping, the transition metal induced a non-negligible magnetic moment in the structure BaTi0.95TM0.05O3. Furthermore, the amount of oxygen defects influences directly the total magnetic moment and also the electronic conduction properties. For BaTi0.95Co0.05O2.95, we have found that the system is half metallic ferromagnet and the magnetic moment is reversed with respect to oxygen vacancy free system. The half metallic character is also present in BaTi0.95Cr0.05O2.95 but with no flipping of the total magnetic moment. For BaTi0.95TM0.05O2.5 systems, the magnetic structure is ferromagnetic and the influence of oxygen vacancy concentration is shown in the enhancement of the ferromagnetic state.

Keywords

BaTiO3 Multiferroic Half metallic Magnetism 

References

  1. 1.
    Lawes, G., Srinivasan, G.: J. Phys. D: Appl. Phys. 44, 243001–243022 (2011). and references thereinCrossRefADSGoogle Scholar
  2. 2.
    Calvani, P., Capizzi, M., Donato, F., Lupi, S., Maselli, P., Peschiaroli, D.: Phys. Rev. B 47, 8917–8922 (1993)CrossRefADSGoogle Scholar
  3. 3.
    Nakayama, H., Katayama-Yoshida, H.: Jpn. J. Appl. Phys. 40, 1355–1358 (2001)CrossRefADSGoogle Scholar
  4. 4.
    Chao, Z., Wang, C.L., Li, J.C., Yang, K.: Chin. Phys. 16, 1422–1428 (2007)CrossRefADSGoogle Scholar
  5. 5.
    Perlov, A., Yaresko, A., Antonov, V. PY-LMTO, A Spin-polarized Relativistic Linear Muffin-tin Orbitals Package for Electronic Structure Calculations. unpublishedGoogle Scholar
  6. 6.
    Janak, J.F., Moruzzi, V.L., Williams, A.R.: Phys. Rev. B 15, 2854–2857 (1977)CrossRefADSGoogle Scholar
  7. 7.
    Akimoto, J., Gotoh, Y., Oosawa, Y.: Acta Crystallogr. Sect. C: Cryst. Struct. Commun. 50, 160–161 (1994)CrossRefGoogle Scholar
  8. 8.
    Meyer, M., Nicoloso, N., Jaenisch, V.: Phys. Rev. B 56, 5961–5966 (1997)CrossRefADSGoogle Scholar
  9. 9.
    Cantele, G., Degoli, E., Luppi, E., Magri, T., Ninno, D., Iadonisi, G., Ossicini, S.: Phys. Rev. B 72, 113303–113306 (2005)CrossRefADSGoogle Scholar
  10. 10.
    Cao, D., Cai, M.Q., Zheng, Y.: Phys. Chem. Chem. Phys. 11, 10934–10938 (2009)CrossRefGoogle Scholar
  11. 11.
    Akishige, Y., Yamazaki, Y., Môri, N.: J. Phys. Soc. Jpn. 73, 1267–1272 (2004)CrossRefADSGoogle Scholar
  12. 12.
    Dang, N.V., Nguyen, H.M., Chuang, P.-Y., Thanh, T.D., Lam, V.D., Lee, C.-H., Hong, L.V.: Chin. J. Phys. 50(2), 262–270 (2012)Google Scholar
  13. 13.
    Upadhyay, S., Shrivastava, J., Solanki, A., Choudhary, S., Sharma, V., Kumar, P., Singh, N., Satsangi, V.R., Shrivastav, R., Waghmare, U.V., Dass, S.: J. Phys. Chem. 115(49), 24373–24380 (2011)Google Scholar
  14. 14.
    Lin, Y.H., Zhang, S., Deng, C., Zhang, Y., Wang, X., Nan, C.W.: Appl. Phys. Lett. 92, 112501–112503 (2008)CrossRefADSGoogle Scholar
  15. 15.
    Colson, T.A., Spencer, M.J.S.: Comput. Mater. Sci. 34, 157–165 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Laboratoire de PhysiqueUniversité du 08 mai 45GuelmaAlgeria
  2. 2.Ecole Nationale Supérieure de L’enseignement Technologique de SkikdaSkikdaAlgeria

Personalised recommendations