Skip to main content
Log in

Structural, Magnetic, and Dielectric Properties of Ni0.5Zn0.5Al x Fe2−x O4 Nanoferrites

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

This work investigates the effect of non-magnetic aluminum (Al) substitution in structural, morphological, magnetic, and dielectric properties of nanosized Ni0.5Zn0.5Al x Fe2−x O4 (0.0 ≤ x ≤ 0.25) synthesized through citrate-gel autocombustion route (CGAC). Structural characterizations were performed by using X-ray powder diffraction (XRD), FT-IR, and scanning electron microscope (SEM). XRD reveals the formation of single-phase cubic spinel with crystallite sizes around 62–57 nm for all Al substituted samples estimated from Williamson-Hall method. Two significant absorption bands around 600 cm−1 and 400 cm−1 are observed from FT-IR spectra of samples under investigation, which confirms the formation of a single-phase cubic spinel. Interionic bond lengths and bond angles confirm the solubility of Al in the spinel lattice and support the observed variation in magnetic properties. Using vibrating sample magnetometer (VSM) saturation magnetization, coercivity has been measured. A decrease in lattice parameter, saturation magnetization with increasing Al concentration was attributed to the difference in the ionic radii and weakening of exchange interactions. The decrease in initial permeability explained on the basis of variation in grain size and porosity. Dielectric constant and dielectric loss decreases with increasing Al concentration and with frequency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Kondo, K., Chiba, T., Yamada, S.: J. Magn. Magn. Mater. 541, 254 (2003)

    Google Scholar 

  2. Mohd. Hashim, A., Kumar, S., Koo, B.H., Shirsath, S.E., Mohammed, E.M., Shah, J., Kotnala, R.K., Choi, H.K., Chung, H., Kuma, R.: J. Alloys Comp. 518, 11 (2012)

    Article  Google Scholar 

  3. Venkatesh, D., Himavathi, G., Ramesh, K.V.: J. Super. Nov. Magn. 28, 2801 (2015)

    Article  Google Scholar 

  4. Mohamed, M.B., El Sayed, K.: Compos. Part B 56, 270 (2014)

    Article  Google Scholar 

  5. Bahiraei, H., Zargar Shoushtari, M., Gheisari, K., Ong, C.K.: J. Magn. Magn. Mater. 371, 29 (2014)

    Article  ADS  Google Scholar 

  6. Bueno, A.R., Gregori, M.L., Nobrega, M.C.S.: Mat. Chem. Phys. 105, 229 (2007)

    Article  Google Scholar 

  7. Varaprasad, B.B.V.S.: Mod. Phy. Lett. B. 28, 1450155 (2014)

    Google Scholar 

  8. Goldman, A.: Modern ferrite technology, p 87. Van Nostrand Reinhold, New York (1990)

    Google Scholar 

  9. Li, M., Zhou, Z., Liu, M., Lou, J., Oates, D. E., Dionne Ming, G. F., Wang, L., Sun, N. X.: J. Phys. D. Appl. Phys. 46, 275001 (2013)

    Article  ADS  Google Scholar 

  10. Eltabey, M.M., El-Shokrofy, K.M., Gharbia, S.A.: J. Alloy Comp. 509, 2473 (2011)

    Article  Google Scholar 

  11. Vishnu Prasad Rao, K., Purushotham, Y., Chandel, J.S.: Cryst. Res. Technol. 31, 329 (1996)

    Article  Google Scholar 

  12. Lakhani, V K, Modi, K B: J. Phys. D. Appl. Phys. 44, 245403 (2011)

    Article  ADS  Google Scholar 

  13. Rajesh Babu, B., Prasad, M.S.R., Ramesh, K.V., Purushotham, Y.: Mat. Chem. Phys. 148, 585 (2014)

    Article  Google Scholar 

  14. Rajesh Babu, B., Prasad, M.S.R., Ramesh, K.V.: Int. J. Modern Phys. B. 29, 1550032 (2015)

    Article  Google Scholar 

  15. Rajesh Babu, B., Ramesh, K.V., Prasad, M.S.R., Purushotham, Y.: Mod. Phys. Lett. B. 29, 1550151 (2015)

    Article  Google Scholar 

  16. Valenzula, R.: Magnetic Ceramics. Cambridge Press (1994)

  17. Vegard, L.: Z. Phys. 5, 17 (1921)

    Article  ADS  Google Scholar 

  18. Sickafus, K.E., Wills, J.M., Grimes, N.W.: J. Ame. Cera. Soc. 82, 3279 (1999)

    Article  Google Scholar 

  19. Lakhani, V.K., Pathak, T.K., Vasoya, N.H., Modi, K.B.: Sol. Sta. Sci. 13, 539 (2011)

    Article  ADS  Google Scholar 

  20. Goodenough, J.B.: J. Phys. Chem. Sol. 6, 287 (1958)

    Article  ADS  Google Scholar 

  21. Kanamori, J., Phys, J.: Chem. Sol. 10, 87 (1959)

    Article  Google Scholar 

  22. Williamson, G.K., Hall, W.H.: Acta. Metal. 1, 22 (1953)

    Article  Google Scholar 

  23. Tang, G.D, Shang, Z.F., Zhang, X.Y., Xu, J., Li, Z.Z., Zhen, C.M., Qi, W.H., Lang, L.L.: Phys. B 463, 26 (2015)

    Article  ADS  Google Scholar 

  24. Lakhani, V.K., Pathak, T.K., Vasoya, N.H., Modi, K.B.: Sol. Sta. Sci. 13, 539 (2011)

    Article  ADS  Google Scholar 

  25. Baykal, A., Genç, F., Elmal, A.Z., Gok̈ce, S., Sertkol, M., Soz̈eri, H.: J. Inorg. Organomet. Polym. (2015). doi:10.1007/s10904-015-0288-0

    Google Scholar 

  26. Maghsoudi, I., Hadianfard, M.J., Shokrollahi, H.: J. Alloys Compd. 481, 539 (2009)

    Article  Google Scholar 

  27. Hoque, S.M., Choudhry, Md.A., Islam, Md.F.: J. Magn. Magn. Mater. 251, 292 (2002)

    Article  ADS  Google Scholar 

  28. Manjura Hoque, S., Samir Ullah, M., Khan, F.A., Hakim, M.A., Saha, D.K.: Phys. B Condens. Matter 406, 1799 (2011)

    Article  ADS  Google Scholar 

  29. Verma, V., Gairola, S.P., Pandey, V., Kotanala, R.K., Su, H.: Sol. Sta. Comm. 148, 117 (2008)

    Article  ADS  Google Scholar 

  30. De Fazio, E., Bercoff, P.G., Jacobo, S.E.: J. Magn. Magn. Mater. 323, 2813 (2011)

    Article  ADS  Google Scholar 

  31. Shrotri, J.J., Kulkarni, S.D., Deshpande, C.E., Mitra, A., Sainkar, S.R., Anil Kumar, P.S., Date, S.K.: Mat. Chem. Phy. 59, 1 (1999)

    Article  Google Scholar 

  32. Valenzuela, R.: Magnetic Ceramics. National University of Maxico (1994)

  33. Yue, Z., Li, L., Zhou, J., Zhang, H., Gui, Z.: J. Magn. Magn. Mater. 233, 224 (2001)

    Article  ADS  Google Scholar 

  34. Koops, C.G.: Phys. Rev. 83, 121 (1951)

    Article  ADS  Google Scholar 

  35. Yin, W.S., Hassan, J., Hashim, M.: AIP Conf. Proc. 1250, 325 (2010)

    Article  ADS  Google Scholar 

  36. Mangalaraja, R.V., Ananthakumar, S., Manohar, P., Gnanam, F.D.: J. Magn. Magn. Mater. 253, 56 (2002)

    Article  ADS  Google Scholar 

  37. Verma, S., Chand, J., Singh, M.: Adv. Mat. Lett. 4, 310 (2013)

    Google Scholar 

  38. Batoo, K.M., Kumar, S., Lee, C.G., Alimuddin, K.: Curr. Appl. Phys. 9, 826 (2009)

    Article  ADS  Google Scholar 

  39. Verma, A., Chatterjee, R.: J. Magn. Magn. Mater. 306, 313 (2006)

    Article  ADS  Google Scholar 

  40. Narayanaswamy, A., Sivakumar, N.: Bull. Mater. Sci. 31, 373 (2008)

    Article  Google Scholar 

  41. Sheik, A.D., Amthe, V.L.: J. Mater. Sci. 43, 2018 (2008)

    Article  ADS  Google Scholar 

  42. Ajmal, M., Maqsood, A.: Mater. Lett. 62, 2077 (2008)

    Article  Google Scholar 

  43. Kony, E.: Egypt. J. Sol. 27, 285 (2004)

    Google Scholar 

  44. Maxwell, C.: A Treatise on Electricity and Magnetism. Oxford University Press, Oxford (1988)

    MATH  Google Scholar 

  45. Wagner, K.W.: Amer. J. Phys. 40, 817 (1973)

    Google Scholar 

  46. Nasir, S., Anis-ur-Rehman, M.: Phys. Scr. 84, 025603 (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. V. Ramesh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babu, B.R., Ramesh, K.V., R. Prasad, M.S. et al. Structural, Magnetic, and Dielectric Properties of Ni0.5Zn0.5Al x Fe2−x O4 Nanoferrites. J Supercond Nov Magn 29, 939–950 (2016). https://doi.org/10.1007/s10948-015-3350-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-015-3350-9

Keywords

Navigation