Skip to main content
Log in

Inducement of Itinerant Electron Transport in Charge-Ordered Pr0.6Ca0.4MnO3 by Ba Doping

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

The effects of Ba 2+ doping on the electrical and magnetic properties of charge-ordered Pr0.6Ca0.4MnO3 were investigated through electrical resistivity and AC susceptibility measurements. X-ray diffraction data analysis showed an increase in unit cell volume with increasing Ba 2+ content indicating the possibility of substituting Ba 2+ for the Ca-site. Electrical resistivity measurements showed insulating behavior and a resistivity anomaly at around 220 K. This anomaly is attributed to the existence of charge ordering transition temperature, \(T^{\mathrm {R}}_{\text {CO}}\) for the x = 0 sample. The Ba-substituted samples exhibited metallic to insulator transition (MI) behavior, with transition temperature, T MI, increasing from ∼98 K (x = 0.1) to ∼122 K (x = 0.3). AC susceptibility measurements showed ferromagnetic to paramagnetic (FM-PM) transition for Ba-substituted samples with FM-PM transition temperature, T c, increasing from ∼121 K (x = 0.1) to ∼170 K (x = 0.3), while for x = 0, an antiferromagnetic to paramagnetic transition behavior with transition temperature, T N, ∼170 K was observed. In addition, inverse susceptibility versus T plot showed a deviation from the Curie–Weiss behavior above T c, indicating the existence of the Griffiths phase with deviation temperature, T G, increasing from 160 K (x = 0.1) to 206 K (x = 0.3). Magnetoresistance, MR, behavior indicates intrinsic MR mechanism for x = 0.1 which changed to extrinsic MR for x > 0.2 as a result of Ba substitution. The weakening of charge ordering and inducement of ferromagnetic metallic (FMM) state as well as increase in both T c and T MI are suggested to be related to the increase of tolerance factor, τ, and increase of e g −electron bandwidth as average ionic radius at A-site, <r A> increased with Ba substitution. The substitution may have reduced MnO6 octahedral distortion and changed the Mn–O–Mn angle which, in turn, promotes itinerancy of charge carrier and enhanced double exchange mechanism. On the other hand, increase in A-site disorder, which is indicated by the increase in σ 2 is suggested to be responsible for the widening of the difference between T c and T MI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Dagotto, E., Hotta, T., Moreo, A.: Phys. Rep. 344, 1–153 (2001)

    Article  ADS  Google Scholar 

  2. Tokura, Y., Tomioka, Y.: J. Magn. Magn. Mater. 200, 1–23 (1999)

    Article  ADS  Google Scholar 

  3. Jin, S., Tiefel, T.H., Mc Cormack, M., Fastnacht, R.A., Ramesh, R., Chen, L.H.: Science 264, 413–415 (1994)

    Article  ADS  Google Scholar 

  4. Zener, C.: Phys. Rev. B 82, 403–405 (1951)

    Article  ADS  Google Scholar 

  5. Millis, A.J., Shraiman, B.I., Muller, R.: Phy. Rev. Lett. 77, 175–178 (1996)

    Article  ADS  Google Scholar 

  6. Tomioka, Y., et al.: pp 155–175, Kluwer Academic/Plenum Publisher (1999)

  7. Li, Z.Q., et al.: Physica B. 351, 114–120 (2004)

    Article  ADS  Google Scholar 

  8. Li, R., Qu, Z., Fang, J.: Physica B 406, 1312–1316 (2011)

    Article  ADS  Google Scholar 

  9. Li, R., Pi, L., Zhang, Y.: Solid State Commun. 152, 616–620 (2012)

    Article  ADS  Google Scholar 

  10. Niebieskikwiat, Sanchez, R.D., Caneiro, A.: J. Magn. Magn. Mater. 237, 241–249 (2001)

    Article  ADS  Google Scholar 

  11. Wang, K.F., Wang, Y., Wang, L.F., Dong, S.: Phys. Rev. B. 73, 134411–1–134411-10 (2006)

    ADS  Google Scholar 

  12. Rama, N., Sankaranarayanan, V., Rao, M., SR.: J. Magn. Magn. Mater. 292, 468–475 (2005)

    Article  ADS  Google Scholar 

  13. Khelifi, J., Tozri, A., Issaoui, F., Dhahri, E., Hlil, E.K.: Ceramics International 40, 1641–1649 (2014)

    Article  Google Scholar 

  14. Misra Sushil, K., et al. J. Magn. Magn. Mater. 322(19), 2902–2907 (2010)

    Article  ADS  Google Scholar 

  15. Narsinga Rao, G., et al.: J. Phys. D: Appl. Phys. 42, 095003 (2009)

    Article  ADS  Google Scholar 

  16. Hwang, H.Y., et al.: Phys. Rev. Lett. 75(5), 914–917 (1995)

    Article  ADS  Google Scholar 

  17. Sacanell, J., et al.: J. Phys: Condens. Matter. 19, 186226 (2007)

    ADS  Google Scholar 

  18. Kim, K.H., Uehara, M., Hess, C., Sharma, P.A., Cheong, S-W.: Phys. Rev. Lett. 84, 2961 (2000)

    Article  ADS  Google Scholar 

  19. Hongwei, Qin, et al.: Materials Transaction 45(4), 1251–1254 (2004)

    Article  Google Scholar 

  20. Krishna, D.C., Reddy, V.P. J. Alloys Compd. 479, 661–669 (2009)

    Article  Google Scholar 

  21. Venkataiah, G., Reddy, V.P.: Solid State Commun. 136, 114–119 (2005)

    Article  ADS  Google Scholar 

  22. Venkataiah, G., Prasad, V., Reddy, V.P.: J. Alloys Compd. 429, 1–9 (2007)

    Article  Google Scholar 

  23. Munirathinam, B., et al.: J. Phys. Chem. Solids 73, 925–930 (2012)

    Article  ADS  Google Scholar 

  24. Sundaresan, A., et al.: Phys. Rev. B 57, 2690–2693 (1998)

    Article  ADS  Google Scholar 

  25. Mollah, S., et al.: J. of Magn. Magn. Mater. 284, 383–394 (2004)

    Article  ADS  Google Scholar 

  26. Dogra, A., et al.: J. Alloys Compd. 493, L19–L24 (2010)

    Article  Google Scholar 

  27. Dogra, A., et al.: Supercond. Nov. Magn. 24, 1425–1431 (2011)

    Article  Google Scholar 

  28. Raveau, B., et al.: J. Phys: Conds. Matter. 15, 7055–7062 (2003)

    ADS  Google Scholar 

  29. Zhu, D., et al.: J. Appl. Phys. 95, 4245–4250 (2004)

    Article  ADS  Google Scholar 

  30. Thanh, T.D., et al.: Phys. B 407, 145–152 (2012)

    Article  ADS  Google Scholar 

  31. Smolyaninova, V.N., et al.: J. Magn. Magn. Mater. 248, 348–354 (2002)

    Article  ADS  Google Scholar 

  32. Wang, K.F., et al.: Thin Solid Films 518, e38–e41 (2010)

    Article  ADS  Google Scholar 

  33. Tomioka, Y., et al.: Phys B 237–238, 6–10 (1997)

    Article  Google Scholar 

  34. Lees, M.R., et al.: J. Phys: Condens. Matter. 8, 2967–2979 (1996)

    ADS  Google Scholar 

  35. Lees, M. R., et al.: Physica B 223&224, 532–534 (1996)

    Article  Google Scholar 

  36. Raveau, B., Maignan, A., Martin, C.: J. Solid State Chem. 130, 162–166 (1997)

    Article  ADS  Google Scholar 

  37. Hebert, S., Maignan, A., Martin, C., Raveau, B. Solid State Comm. 121, 229–234 (2002)

    Article  ADS  Google Scholar 

  38. Shannon, R.D.: Acta Cryst. A 32, 751 (1976)

    Article  Google Scholar 

  39. Vanitha, P.V., et al.: Chem. Mater. 12, 1666–1670 (2000)

    Article  Google Scholar 

  40. Ri-Zhu, C.H.Y.: J. Mater Sci. 42, 660–668 (2007)

    Article  ADS  Google Scholar 

  41. Uthra, D., Singha, R.K.: Optoelectronic and advanced materials- Rapid communication 4(3), 322–32 (2010)

  42. Panwar, N., Sen, V., Pandya, D.K., Agarwal, S.K.: J. Alloys Compd. 456, 479–484 (2008)

    Article  Google Scholar 

  43. Li, Z.Q., et al.: J. Magn. Magn. Mater. 284, 133–139 (2004)

  44. Hwang, H.Y., Cheong, S.W., Ong, N.P., Batlogg, B.: Phys. Rev. Lett. 77, 2041–2044 (1996)

    Article  ADS  Google Scholar 

  45. Xiong, C.S., et al.: J. Alloys Compd. 474, 316–320 (2009)

    Article  Google Scholar 

  46. Venkataiah, G., Huang, J.C.A., Reddy, P.V.: J. Magn. Magn. Mater. 322, 417–423 (2010)

    Article  ADS  Google Scholar 

  47. Lalitha, G., Reddy, P.V.: J. Alloys Compd. 494, 476–482 (2010)

    Article  Google Scholar 

  48. Shaikh, M. W., Varshney, D.: Mater. Chem. Phys 134, 886–898 (2012)

    Article  Google Scholar 

  49. Mott, N.F., Davis, E.A. Clarendon, Oxford (1971)

  50. Emin, D., Holstein, T.: Ann. Phys. 53, 439 (1969)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Ibrahim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ibrahim, N., Yahya, A.K. Inducement of Itinerant Electron Transport in Charge-Ordered Pr0.6Ca0.4MnO3 by Ba Doping. J Supercond Nov Magn 29, 911–922 (2016). https://doi.org/10.1007/s10948-015-3346-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-015-3346-5

Keywords

Navigation