Skip to main content
Log in

Cation Migration-Induced Crystal Phase Transformation in Copper Ferrite Nanoparticles and Their Magnetic Property

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Impact of crystal phase evolution on structural and magnetic properties of copper ferrite nanoparticles is studied and reported. The copper ferrite nanoparticles were synthesized by starch-assisted sol-gel auto-combustion method and further annealed at 200, 500, 800, and 1100°C. The X-ray diffraction study indicated phase evolution from cubic to tetragonal with increase of annealing temperature. Raman spectroscopy and Fourier transform infrared spectroscopy study revealed the impact of phase transformation and cation redistribution in copper ferrite nanoparticles with increase of annealing temperature. X-ray photoelectron study revealed the cation migration with annealing temperature, which is responsible for structural phase evolution. The field emission-scanning electron microscopy (FE-SEM) study revealed that the ferrite nanoparticles at a lower annealing temperature (200, 500, and 800°C) were agglomerated spherical and elongated particles in the grain size range 10–100 nm. However, at a higher annealing temperature (1100°C), it was hexagonal plate-like particles in the grain size range 50–200 nm. The increase in saturation magnetization (M s) from 11.60 emu/g (200°C) to 25.48 emu/g (1100°C) with grain growth and crystal phase evolution (i.e., increase of c/a ratio and cation redistribution in CuFe2O4 mixed spinel ferrite) was noticed. In addition, a crystal phase evolution from cubic to tetragonal and a grain growth as a function of annealing temperature both cause also an increase in coercivity (H c) value from 132.56 Oe (200 °C) to 1442.50 Oe (800 °C) Furthermore, the decrease of coercivity (H c) value from 1442.50 Oe (800°C) to 218.06 Oe (1100°C) with increase of annealing temperature was due to the “pinning” effect of domain wall at the grain boundary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Mohapatra, J., Mitra, A., Bahadur, D., Aslam, M.: CrystEngComm 15, 524–532 (2013)

    Article  Google Scholar 

  2. Zhu, M., Meng, D., Wang, C., Diao, G.: ACS Appl. Mater. Interfaces 5, 60306037 (2013)

    Google Scholar 

  3. Yang, Y., Liu, X., Yang, Y., Xiao, W. , Li, Z. , Xue, D. , Li, F. , Ding, J.: J. Mater. Chem. C 1, 2875–2885 (2013)

    Article  Google Scholar 

  4. Shirsath, S.E., Mane, M.L., Yasukawa, Y., Liu, X., Morisako, A.: Phys. Chem. Chem. Phys. 16, 2347–2357 (2014)

    Article  Google Scholar 

  5. Nikam, D.S., Jadhav, S.V., Khot, V.M., Bohara, R.A., Hong, C.K., Mali, S.S., Pawar, S.H.: RSC Adv. 5, 2338–2345 (2015)

    Article  Google Scholar 

  6. Ayyappan, S., Philip, J., Raj, B.: J. Phys. Chem. C. 113, 590–59 (2009)

    Article  Google Scholar 

  7. Kim, K.J., Lee, J.H., Lee, S.H. J. Magn. Magn. Mater 279, 173 (2004)

    Article  ADS  Google Scholar 

  8. Prabhu, D., Narayanasamy, A., Shinoda, K., Jeyadeven, B., Greneche, J.-M., Chattopadhyay, K.: J. Appl. Phys. 109, 013532 (2011)

    Article  ADS  Google Scholar 

  9. Roy, S., Ghose, J.: J. Appl. Phys. 87, 6226–6228 (2000)

    Article  ADS  Google Scholar 

  10. Yokoyama, M., Nakamura, A., Sato, T., Haneda, K.: J. Magn. Soc. Jpn. 22, 243 (1998)

    Google Scholar 

  11. Xiao, Z., Jin, S., Wang, X., Li, W., Wang, J., Liang, C.: J. Mater. Chem. 22, 16598 (2012)

    Article  Google Scholar 

  12. Morrison, A.H., Haneda, K.: J. Appl. Phys. 52, 2496 (1981)

    Article  ADS  Google Scholar 

  13. Misra, R.K.D., Gubbala, S., Kale, A., Egelhoff Jr., W.F.: Mater Sci. Eng. B 111, 164 (2004)

    Article  Google Scholar 

  14. Ramalho, M.A.F., Gama, L., Antonio, S.G., Paiva-Santos, C.O., Miola, E.J., Kiminami, R.H.G.A., Costa, A.C.F.M.: J. Mater. Sci. 42, 3603 (2007)

    Article  ADS  Google Scholar 

  15. Sepelak, V., Bergmann, I., Feldhoff, A., Heitjans, P., Krumeich, F., Menzel, D., Litterst, F.J., Campbell, S.J., Becker, K.D.: J. Phys. Chem. C 111, 5026–5033 (2007)

    Article  Google Scholar 

  16. Raghavender, A.T., Zadro, K., Pajic, D., Skoko, Z., Billiskov, N.: Mater. Lett. 64, 1144–1146 (2010)

    Article  Google Scholar 

  17. Prabhakaran, T., Hemalatha, J.: J. Alloys Compd. 509, 7071–7077 (2011)

    Article  Google Scholar 

  18. Tao, S., Gao, F., Liu, X., Sørensen, O. T.: Mater. Sci. Eng. B 77, 172–176 (2000)

    Article  Google Scholar 

  19. Xiao, Z., Jin, S., Wang, X., Li, W., Wang, J., Liang, C.: J. Mater. Chem. 22, 16598 (2012)

    Article  Google Scholar 

  20. Tsoncheva, T., Manova, E., Velinov, N., Paneva, D., Popova, M., Kunev, B., Tenchev, K., Mitov, I.: Catal. Commun. 12, 105–109 (2010)

    Article  Google Scholar 

  21. Ghasemi, A., Mousavinia, M.: Ceram. Int. 40, 2825–2834 (2014)

    Article  Google Scholar 

  22. Langford, J., Wilson, A.: J. Appl. Crystallogr. 11, 102–103 (1978)

    Article  Google Scholar 

  23. Cullity, B.D.: Introduction to Magnetic Materials, Addison–Wesley, Reading, MA (1972)

  24. Ayyappan, S., Philip, J., Raj, B.: J. Phys. Chem. C 113, 590–596 (2009)

    Article  Google Scholar 

  25. Jahn, H.A., Teller, E.: Proc. R. Soc. London 161, 220 (1937)

    Article  ADS  Google Scholar 

  26. Desai, M., Prasad, S., Venkataramani, N., Samajdar, I., Nigam, A.K., Krishnan, R.: J. Appl. Phys. 91, 2220–2227 (2002)

    Article  ADS  Google Scholar 

  27. Ayyappan, S., Philip, J., Raj, B.: J. Phys. Chem. C 113, 590–596 (2009)

    Article  Google Scholar 

  28. Wang, Z., Downs, R.T., Pischedda, V., Shetty, R., Saxena, S.K., Zha, C.S., Zhao, Y.S., Schiferl, D., Waskowska, A.: Phys. Rev. B 68, 094101 (2003)

    Article  ADS  Google Scholar 

  29. Verma, K., Kumar, A., Varshney, D.: Curr. Appl. Phys. 13, 467–473 (2013)

    Article  ADS  Google Scholar 

  30. Chatterjee, B.K., Bhattacharjee, K., Dey, A., Ghosh, C.K., Chattopadhyay, K.K.: Dalton Trans. 43, 7930–7944 (2014)

    Article  Google Scholar 

  31. Ahlawat, A., Sathe, V.G., Reddy, V.R., Gupta, A.: J. Magn. Magn. Mater. 323, 2049–2054 (2011)

    Article  ADS  Google Scholar 

  32. Popovic, Z.V., Dohcevic-Mitrovic, Z., Scepanovic, M., Grujic-Brojcin, M., Askrabic, S.: Ann. Phys. 523, 62 (2011)

    Article  Google Scholar 

  33. Liu, W., Chan, Y., Cai, J., Leung, C., Mak, C., Wong, K., Zhang, F., Wu, X., Qi, X. D.: Br. J. Appl. Phys. 112, 104306 (2012)

    Article  ADS  Google Scholar 

  34. Waldron, R.D.: Phys. Rev. 99, 1727 (1955)

    Article  ADS  Google Scholar 

  35. Patil, R.P., Delekar, S.D., Mane, D.R., Hankare, P.P.: Res. Phys. 3, 129–133 (2013)

    Google Scholar 

  36. Assar, S.T., Abosheiasha, H.F.: J. Magn. Magn. Mater. 374, 264–272 (2015)

    Article  ADS  Google Scholar 

  37. Rais, A., Taibi, K., Addou, A., Zanoun, A., Al-Douri, Y.: Ceram. Int. 40, 14413–14419 (2014)

    Article  Google Scholar 

  38. Srivastava, C.M., Srinivasan, T.T., Aivar, R: J. Appl. Phys. 53, 781 (1982)

    Article  ADS  Google Scholar 

  39. Zaki, H.M., Dawoud, H.A.: Phys. B 405, 4476 (2010)

    Article  ADS  Google Scholar 

  40. Aneesh Kumar, K.S., Bhowmik, R.N.: Mater. Chem. Phys. 146, 159–169 (2014)

    Article  Google Scholar 

  41. Wang, Y., Zhao, H., Li, M., Fan, J., Zhao, G.: Appl. Catal. B Environ. 147, 534– 545 (2014)

    Article  Google Scholar 

  42. Nawale, A.B., Kanhe, N.S., Patil, K.R., Bhoraskar, S.V., Mathea, V.L., Das, A.K.: J. Alloys Compd. 509, 4404–4413 (2011)

    Article  Google Scholar 

  43. Mittal, V.K., Chandramohan, P., Bera, S., Srinivasan, M.P., Velmurugan, S., Narasimhan, S.V: Solid State Commun. 137, 6–10 (2006)

    Article  ADS  Google Scholar 

  44. Re, Y., Dong, Q., Feng, J., Ma, J., Wen, Q., Zhang, M.: J. Colloid Interface Sci. 382, 90–96 (2012)

    Article  Google Scholar 

  45. Zhou, Z., Zhang, Y., Wang, Z., Wei, W., Tang, W., Shi, J., Xiong, R.: Appl. Surf. Sci. 254, 6972 (2008)

    Article  ADS  Google Scholar 

  46. Karakaş, Z.K., Boncukcuoğlu, R., Karakaş, İ.H., Ertuğrul, M.: J. Magn. Magn. Mater 374, 298–306 (2015)

    Article  ADS  Google Scholar 

  47. Zheng, M., Wu, X.C., Zou, B.S., Wang, Y.J.: J. Magn. Magn. Mater 183, 152 (1998)

    Article  ADS  Google Scholar 

  48. George, M., Mary John, A., Nair, S.S., Joy, P.A., Anantharaman, M.R.: J. Magn. Magn. Mater. 302, 190–195 (2006)

    Article  ADS  Google Scholar 

  49. Tailhades, Ph., Villette, C., Rousset, A., Kulkarni, G. U., Kannan, K.R., Rao, C.N.R., Lenglet, M.: J. Solid State Chem. 141, 56–63 (1998)

    Article  ADS  Google Scholar 

  50. Coey, J.M.D.: Rare Earth Permenant Magnetism, p 220. John Wiley and Sons, New York (1996)

    Google Scholar 

  51. Kambale, R.C., Song, K.M., Koo, Y.S., Hur, N.: J. Appl. Phys. 110, 053910 (2011)

    Article  ADS  Google Scholar 

  52. Li, J., Yuan, H., Li, G., Liu, Y., Leng, J.: J. Magn. Magn. Mater 322, 3396–3400 (2010)

    Article  ADS  Google Scholar 

  53. Kambale, R.C., Shaikh, P.A., Kamble, S.S., Kolekar, Y.D.: J. Alloys Compd. 478, 599–603 (2009)

    Article  Google Scholar 

  54. Coey, J.M.D.: Rare Earth permanent magnetism, p 220. John Wiley and Sons, New York (1996)

    Google Scholar 

  55. Wang, L., Dong, H., Li, J., Hua, J., Xu, S., Feng, M., Li, H.: Ceram. Int. 40, 10323–10327 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

This study is supported by European Project Excellent Teams - CZ.1.07/2.3.00/30.0005 and Sustainability and Development, REG LO1211, Program of National Program of Sustainability I (The Ministry of Education, Youth and Sports) at The Materials Research Centre, Faculty of Chemistry, Brno University of Technology and Project Centre of Polymer Systems (Reg. Number: CZ.1.05/2.1.00/03.0111) at Tomas Bata University in Zlín, Czech Republic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raghvendra Singh Yadav.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, R.S., Havlica, J., Masilko, J. et al. Cation Migration-Induced Crystal Phase Transformation in Copper Ferrite Nanoparticles and Their Magnetic Property. J Supercond Nov Magn 29, 759–769 (2016). https://doi.org/10.1007/s10948-015-3339-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-015-3339-4

Keywords

Navigation